Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques pour un nanotube de carbone simplifié.
We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube.
A hybrid classical-quantum approach for ultra-scaled confined nanostructures : modeling and simulation
C Jourdana;P Pietra;
2012
Abstract
We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube.File | Dimensione | Formato | |
---|---|---|---|
prod_234880-doc_93788.pdf
accesso aperto
Descrizione: A hybrid classical-quantum approach for ultra-scaled confined nanostructures : modeling and simulation
Dimensione
190.63 kB
Formato
Adobe PDF
|
190.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.