Febrile seizures (FS) affect 5-12% of infants and children up to 6 years of age. There is now epidemiological evidence that FS are associated with subsequent afebrile and unprovoked seizures in approximately 7% of patients, which is 10 times more than in the general population. Extensive genetic studies have demonstrated that various loci are responsible for familial FS, and the FEB3 autosomal-dominant locus has been identified on chromosome 2q23-24, where the SCN1A gene is mapped. However, gene mutations causing simple FS have not been found yet. Here we show that the M145T mutation of a well conserved amino acid in the first transmembrane segment of domain I of the human Na(v)1.1 channel alpha-subunit cosegregates in all 12 individuals of a large Italian family affected by simple FS. Functional studies in mammalian cells demonstrate that the mutation causes a 60% reduction of current density and a 10-mV positive shift of the activation curve. Thus, M145T is a loss-of-function mutant. These results show that monogenic FS should also be considered a channelopathy.

Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures.

Annesi F;Annesi G;
2005

Abstract

Febrile seizures (FS) affect 5-12% of infants and children up to 6 years of age. There is now epidemiological evidence that FS are associated with subsequent afebrile and unprovoked seizures in approximately 7% of patients, which is 10 times more than in the general population. Extensive genetic studies have demonstrated that various loci are responsible for familial FS, and the FEB3 autosomal-dominant locus has been identified on chromosome 2q23-24, where the SCN1A gene is mapped. However, gene mutations causing simple FS have not been found yet. Here we show that the M145T mutation of a well conserved amino acid in the first transmembrane segment of domain I of the human Na(v)1.1 channel alpha-subunit cosegregates in all 12 individuals of a large Italian family affected by simple FS. Functional studies in mammalian cells demonstrate that the mutation causes a 60% reduction of current density and a 10-mV positive shift of the activation curve. Thus, M145T is a loss-of-function mutant. These results show that monogenic FS should also be considered a channelopathy.
2005
Istituto di Scienze Neurologiche - ISN - Sede Mangone
--
--
-
-
-
File in questo prodotto:
File Dimensione Formato  
prod_49927-doc_13474.pdf

non disponibili

Descrizione: Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures.
Dimensione 516.72 kB
Formato Adobe PDF
516.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/73464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact