Pure and Ca-doped LaCoO3 nanopowders were prepared by a non-alkoxidic sol-gel route using cobalt(II) acetate, lanthanum(III) nitrate and calcium(II) acetate as oxide precursors. The structural evolution and magnetic properties of the samples were studied as a function of thermal treatments in air up to 1273 K. In particular, the microstructure and composition of the systems were analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). For both pure and calcium-doped samples annealing at 973 K resulted in the formation of cubic LaCoO3 (average crystallite size < 30 nm). This phase was fully retained in the calcium-doped materials even after annealing at higher temperatures, whereas a transition to the rhomboedral polymorph was detected in the pure samples at 1073 K. The magnetic behavior of the nanopowders was investigated as a function of temperature and applied field using both dynamic and static susceptibility measurements. Pure lanthanum cobaltite samples underwent a transition to an ordered state at 88 K, and their magnetic properties changed as a function of thermal treatments. As concerns calcium-doped samples, they ordered ferromagnetically at 171 and 185 K, depending on the annealing temperature, and displayed open hysteresis loops with coercive field as large as 1.75 T at low temperatures.

Structural and magnetic properties of pure and Ca-doped LaCoO3 nanopowders obtained by a sol-gel route

L Armelao;D Barreca;
2006

Abstract

Pure and Ca-doped LaCoO3 nanopowders were prepared by a non-alkoxidic sol-gel route using cobalt(II) acetate, lanthanum(III) nitrate and calcium(II) acetate as oxide precursors. The structural evolution and magnetic properties of the samples were studied as a function of thermal treatments in air up to 1273 K. In particular, the microstructure and composition of the systems were analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). For both pure and calcium-doped samples annealing at 973 K resulted in the formation of cubic LaCoO3 (average crystallite size < 30 nm). This phase was fully retained in the calcium-doped materials even after annealing at higher temperatures, whereas a transition to the rhomboedral polymorph was detected in the pure samples at 1073 K. The magnetic behavior of the nanopowders was investigated as a function of temperature and applied field using both dynamic and static susceptibility measurements. Pure lanthanum cobaltite samples underwent a transition to an ordered state at 88 K, and their magnetic properties changed as a function of thermal treatments. As concerns calcium-doped samples, they ordered ferromagnetically at 171 and 185 K, depending on the annealing temperature, and displayed open hysteresis loops with coercive field as large as 1.75 T at low temperatures.
2006
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
lanthanum cobaltite
Ca-doping
nanopowders
magnetic properties
sol-gel
File in questo prodotto:
File Dimensione Formato  
prod_47659-doc_49014.pdf

non disponibili

Descrizione: PAPER
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/74640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact