Hydrogen has attracted a great share of attention both as an energy carrier and as an irreplaceble reagent for many industrial processes. Photoactivated routes, ranging from photocatalytic and photo-electrochemical water splitting to photoreforming of suitable oxygenates, appear to be attractive long-term solutions among possible strategies for hydrogen production. However, the success of such processes depends on the effi cient use of solar energy and on the identification of active and stable catalysts, which, in addition, should be eco-friendly and available in large amounts at accessible costs. Researchers are exploring the use of supported oxide nanomaterials, whichenable an easy catalyst recovery and exhibit unique advantages due to their peculiar nano-organization. In this Feature Article, the potential of such systems towards photoinduced hydrogen evolution is discussed based on selected case studies that highlight the relations between structure, morphology, composition, and functional performances of oxide nanomaterials. In addition, potential limitations of oxide-based nanomaterials as well as unexplored key aspects that require special attention in future investigations are discussed.
Supported metal oxide nanosystems for hydrogen photogeneration: quo vadis?
Barreca D;Gasparotto A;Maccato C;Fornasiero P;
2011
Abstract
Hydrogen has attracted a great share of attention both as an energy carrier and as an irreplaceble reagent for many industrial processes. Photoactivated routes, ranging from photocatalytic and photo-electrochemical water splitting to photoreforming of suitable oxygenates, appear to be attractive long-term solutions among possible strategies for hydrogen production. However, the success of such processes depends on the effi cient use of solar energy and on the identification of active and stable catalysts, which, in addition, should be eco-friendly and available in large amounts at accessible costs. Researchers are exploring the use of supported oxide nanomaterials, whichenable an easy catalyst recovery and exhibit unique advantages due to their peculiar nano-organization. In this Feature Article, the potential of such systems towards photoinduced hydrogen evolution is discussed based on selected case studies that highlight the relations between structure, morphology, composition, and functional performances of oxide nanomaterials. In addition, potential limitations of oxide-based nanomaterials as well as unexplored key aspects that require special attention in future investigations are discussed.File | Dimensione | Formato | |
---|---|---|---|
prod_48668-doc_48513.pdf
solo utenti autorizzati
Descrizione: paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_48668-doc_48514.pdf
solo utenti autorizzati
Descrizione: frontispiece
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.