The orphan G-protein-coupled receptor 37 (GPR37) colocalizes with the dopamine (DA) transporter (DAT) in mouse nigrostriatal presynaptic membranes, and its genetic ablation in homozygous null-mutant (GPR37-KO) mice provokes the marked increase of plasma membrane expression of DAT, alteration of psychostimulant-induced locomotor activity, and reduction of catalepsy induced by DA-receptor antagonists. We report that extracts from GPR37-KO mice displayed biochemical alterations of the nigrostriatal signaling pathways mediated by D1 and D2 dopaminergic receptors. Null-mutant mice showed an increase of the basal phosphorylation level of the D2-regulated Akt kinase. The basal phosphorylation of the D1-activated ERK2 kinase was not altered, but acute treatments with amphetamine or cocaine failed to produce its specific increase, as detected in samples from wild-type littermates. Furthermore, the chronic administration of cocaine to GPR37-KO mice did not increase the expression of the ”FosB transcription factor isoforms. Consistently, behavioral analysis showed that null-mutant animals did not respond to the incentive properties of amphetamine or cocaine, in conditioned place preference tests. Thus, the lack of GPR37 affects both ERK2- and Akt-mediated striatal signaling pathways, impairing the biochemical and behavioral responses typically induced by acute and chronic administration of psychostimulant drugs.

Absence of the GPR37/PAEL receptor impairs striatal Akt and ERK2 phosphorylation, DeltaFosB expression, and conditioned place preference to amphetamine and cocaine

Marazziti D;Mandillo S;Golini E;Matteoni R;
2011

Abstract

The orphan G-protein-coupled receptor 37 (GPR37) colocalizes with the dopamine (DA) transporter (DAT) in mouse nigrostriatal presynaptic membranes, and its genetic ablation in homozygous null-mutant (GPR37-KO) mice provokes the marked increase of plasma membrane expression of DAT, alteration of psychostimulant-induced locomotor activity, and reduction of catalepsy induced by DA-receptor antagonists. We report that extracts from GPR37-KO mice displayed biochemical alterations of the nigrostriatal signaling pathways mediated by D1 and D2 dopaminergic receptors. Null-mutant mice showed an increase of the basal phosphorylation level of the D2-regulated Akt kinase. The basal phosphorylation of the D1-activated ERK2 kinase was not altered, but acute treatments with amphetamine or cocaine failed to produce its specific increase, as detected in samples from wild-type littermates. Furthermore, the chronic administration of cocaine to GPR37-KO mice did not increase the expression of the ”FosB transcription factor isoforms. Consistently, behavioral analysis showed that null-mutant animals did not respond to the incentive properties of amphetamine or cocaine, in conditioned place preference tests. Thus, the lack of GPR37 affects both ERK2- and Akt-mediated striatal signaling pathways, impairing the biochemical and behavioral responses typically induced by acute and chronic administration of psychostimulant drugs.
2011
Istituto di Biologia Cellulare e Neurobiologia - IBCN - Sede Monterotondo Scalo
Istituto di Biochimica e Biologia Cellulare - IBBC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/77429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact