In this paper we propose a three-layered neural network for binary pattern recognition and memorization. Unlike the classic approach to pattern recognition, our net works organizing itself in an unsupervised way, to distinguish beetween different patterns or to recognize similar ones. If we present a binary input to the first layer, after some time steps we could read the output of the net in the third layer, as one and only one neuron activating with high firing rate; the middle layer will act as a generalization layer, i.e. similar pattern will have similar (or the same) representation in the middle layer. We used learning algorithms inspired from other works or from biological data to achieve network stability and a correct pattern memorization. The network can be used for pattern recognition or generalization by selecting output signals from the selection layer or the generalization layer.

A new Unsupervised Neural Network for Pattern Recognition with Spiking Neurons

Rizzo Riccardo;
2006

Abstract

In this paper we propose a three-layered neural network for binary pattern recognition and memorization. Unlike the classic approach to pattern recognition, our net works organizing itself in an unsupervised way, to distinguish beetween different patterns or to recognize similar ones. If we present a binary input to the first layer, after some time steps we could read the output of the net in the third layer, as one and only one neuron activating with high firing rate; the middle layer will act as a generalization layer, i.e. similar pattern will have similar (or the same) representation in the middle layer. We used learning algorithms inspired from other works or from biological data to achieve network stability and a correct pattern memorization. The network can be used for pattern recognition or generalization by selecting output signals from the selection layer or the generalization layer.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR -
dc.authority.orgunit Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR -
dc.authority.people Riano Lorenzo it
dc.authority.people Rizzo Riccardo it
dc.authority.people Chella Antonio it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR *
dc.contributor.appartenenza.mi 860 *
dc.date.accessioned 2024/02/19 15:11:39 -
dc.date.available 2024/02/19 15:11:39 -
dc.date.issued 2006 -
dc.description.abstracteng In this paper we propose a three-layered neural network for binary pattern recognition and memorization. Unlike the classic approach to pattern recognition, our net works organizing itself in an unsupervised way, to distinguish beetween different patterns or to recognize similar ones. If we present a binary input to the first layer, after some time steps we could read the output of the net in the third layer, as one and only one neuron activating with high firing rate; the middle layer will act as a generalization layer, i.e. similar pattern will have similar (or the same) representation in the middle layer. We used learning algorithms inspired from other works or from biological data to achieve network stability and a correct pattern memorization. The network can be used for pattern recognition or generalization by selecting output signals from the selection layer or the generalization layer. -
dc.description.affiliations 1- UNiversita' di Palermo, 2- ICAR CNR, 3- Universita' di Palermo -
dc.description.allpeople Riano, Lorenzo; Rizzo, Riccardo; Chella, Antonio -
dc.description.allpeopleoriginal Riano Lorenzo, Rizzo Riccardo, Chella Antonio -
dc.description.fulltext none en
dc.description.numberofauthors 3 -
dc.identifier.doi 10.1109/IJCNN.2006.246888 -
dc.identifier.isbn 0-7803-9490-9 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/83776 -
dc.identifier.url http://biblioproxy.cnr.it:2093/xpl/articleDetails.jsp?arnumber=1716636 -
dc.language.iso eng -
dc.publisher.country USA -
dc.publisher.name IEEE Computer Society -
dc.publisher.place Washington, DC -
dc.relation.conferencedate 16-21 July 2006 -
dc.relation.conferencename IEEE International Joint Conference on Neural Networks . IJCNN '06. -
dc.relation.conferenceplace Vancouver -
dc.relation.firstpage 3903 -
dc.relation.ispartofbook Proceedings of International Joint Conference on Neural Networks, 2006 -
dc.relation.lastpage 3910 -
dc.relation.numberofpages 7 -
dc.subject.keywords SPike neural netwroks -
dc.subject.singlekeyword SPike neural netwroks *
dc.title A new Unsupervised Neural Network for Pattern Recognition with Spiking Neurons en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 77539 -
iris.orcid.lastModifiedDate 2024/04/04 11:53:31 *
iris.orcid.lastModifiedMillisecond 1712224411374 *
iris.scopus.extIssued 2006 -
iris.scopus.extTitle A new unsupervised neural network for pattern recognition with spiking neurons -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.1109/ijcnn.2006.246888 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 27/12/2025 04:02:40 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1766804560963 -
iris.unpaywall.oastatus closed *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/83776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact