The interaction between an analyte and a biological recognition system is normally detected in biosensors by the transducer element which converts the molecular event into a measurable effect, such as an electrical or optical signal. Porous silicon microstructures have unique optical and morphological properties that can be exploited in biosensing. The large specific surface area (even greater than 500 m2/cm3) and the resonant optical response allow detecting the effect of a change in refractive index of liquid solutions, which interact with the porous matrix, with very high sensitivity. Moreover, the porous silicon surface can be chemically modified to link the bioprobe which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The molecular probe we used was purified by an extremophile organism, Thermococcus litoralis: the protein is very stable in a wide range of temperatures even if with different behavior respect to the interaction with the ligand.

Design and realization of highly stable porous silicon optical biosensor based on proteins from extremophiles

De Stefano L;Rea I;De Tommasi E;Rendina I;
2007

Abstract

The interaction between an analyte and a biological recognition system is normally detected in biosensors by the transducer element which converts the molecular event into a measurable effect, such as an electrical or optical signal. Porous silicon microstructures have unique optical and morphological properties that can be exploited in biosensing. The large specific surface area (even greater than 500 m2/cm3) and the resonant optical response allow detecting the effect of a change in refractive index of liquid solutions, which interact with the porous matrix, with very high sensitivity. Moreover, the porous silicon surface can be chemically modified to link the bioprobe which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The molecular probe we used was purified by an extremophile organism, Thermococcus litoralis: the protein is very stable in a wide range of temperatures even if with different behavior respect to the interaction with the ligand.
2007
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact