Light passing through a photonic crystal can undergo a negative or a positive refraction. The two refraction states can be functions of the contrast index, the incident angle and the slab thickness. By suitably using these properties it is possible to realize very simple and very efficient optical components to route the light. As example we present two devices: a passive device acting as a polarizing beam splitter and a tunable switch. In the first device TM polarization is refracted in positive direction whereas TE component is negatively refracted, in the second device the light is positively refracted at room temperature and negatively refracted varying the local temperature of the device.

Negative refraction devices based on self-collimating photonic crystals

Dardano P;Mocella V;Moretti L;Rendina I
2007

Abstract

Light passing through a photonic crystal can undergo a negative or a positive refraction. The two refraction states can be functions of the contrast index, the incident angle and the slab thickness. By suitably using these properties it is possible to realize very simple and very efficient optical components to route the light. As example we present two devices: a passive device acting as a polarizing beam splitter and a tunable switch. In the first device TM polarization is refracted in positive direction whereas TE component is negatively refracted, in the second device the light is positively refracted at room temperature and negatively refracted varying the local temperature of the device.
2007
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/170640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact