The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical nonequilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well-known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and submicrometer Brownian motors in an equilibrium fluid, based purely upon nanofriction.
Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction
Andrea Gnoli;Alberto Petri;Giorgio Pontuale;Giacomo Gradenigo;Alessandro Sarracino;Andrea Puglisi
2013
Abstract
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical nonequilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well-known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and submicrometer Brownian motors in an equilibrium fluid, based purely upon nanofriction.File | Dimensione | Formato | |
---|---|---|---|
prod_209341-doc_47714.pdf
solo utenti autorizzati
Descrizione: Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.