The configuration of machine tools and process planning problem are traditionally managed as independent stages, where the process plan is designed by considering a number of machine tool solutions available from catalogue. This strategy presents a number of disadvantages in terms of process results and machine capabilities fully exploitation. The current paper proposes an integrated approach for jointly configuring machine tools and process planning. The approach is structured in 4 major recursive steps that eventually ensure the accomplishment of the best trade-off between the machine tool static and dynamic behaviour, the process quality and the resulting economic efficiency. The benefits of the approach have been evaluated for a test case application in the railway and automotive sectors. © 2013 CIRP.
An integrated approach to support the joint design of machine tools and process planning
Leonesio M;Molinari Tosatti L;Pellegrinelli S;Valente;
2013
Abstract
The configuration of machine tools and process planning problem are traditionally managed as independent stages, where the process plan is designed by considering a number of machine tool solutions available from catalogue. This strategy presents a number of disadvantages in terms of process results and machine capabilities fully exploitation. The current paper proposes an integrated approach for jointly configuring machine tools and process planning. The approach is structured in 4 major recursive steps that eventually ensure the accomplishment of the best trade-off between the machine tool static and dynamic behaviour, the process quality and the resulting economic efficiency. The benefits of the approach have been evaluated for a test case application in the railway and automotive sectors. © 2013 CIRP.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.