Hydrophobins are small proteins secreted by fungi, which self-assemble into amphipathic membranes at air-liquid or liquid-solid interfaces. The physical and chemical properties of some hydrophobins, both in solution and as a biofilm, are affected by poly or oligosaccharides. We have studied the interaction between glucose and the hydrophobin Vmh2 from Pleurotus ostreatus by spectroscopic ellipsometry (SE), atomic force microscopy (AFM) and water contact angle (WCA). We have found that Vmh2-glucose complexes forms a chemically stable biofilm, obtained by drop deposition on silicon, 1.6 nm thick and containing 35 per cent of glucose, quantified by SE. AFM highlighted the presence of nanometric rodlet-like aggregates (average height, width and length being equal to 3.6, 23.8 and 40 nm, respectively) on the biofilm surface, slightly different from those obtained in the absence of glucose (4.11, 23.9 and 64 nm). The wettability of a silicon surface, covered by the organic layer of Vmh2-glucose, strongly changed: WCA decreased from 90 degrees down to 17 degrees.

Hydrophobin Vmh2-glucose complexes self-assemble in nanometric biofilms

Rea I;Rendina I;De Stefano L
2012

Abstract

Hydrophobins are small proteins secreted by fungi, which self-assemble into amphipathic membranes at air-liquid or liquid-solid interfaces. The physical and chemical properties of some hydrophobins, both in solution and as a biofilm, are affected by poly or oligosaccharides. We have studied the interaction between glucose and the hydrophobin Vmh2 from Pleurotus ostreatus by spectroscopic ellipsometry (SE), atomic force microscopy (AFM) and water contact angle (WCA). We have found that Vmh2-glucose complexes forms a chemically stable biofilm, obtained by drop deposition on silicon, 1.6 nm thick and containing 35 per cent of glucose, quantified by SE. AFM highlighted the presence of nanometric rodlet-like aggregates (average height, width and length being equal to 3.6, 23.8 and 40 nm, respectively) on the biofilm surface, slightly different from those obtained in the absence of glucose (4.11, 23.9 and 64 nm). The wettability of a silicon surface, covered by the organic layer of Vmh2-glucose, strongly changed: WCA decreased from 90 degrees down to 17 degrees.
2012
Istituto per la Microelettronica e Microsistemi - IMM
SURFACE
ELLIPSOMETRY
PROTEINS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/210499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact