High frequencies (visible and near infrared) applications of metamaterials and plasmonic structures are strongly limited by dissipative losses in structures, due to poor conductivity of most used metals in this frequency range. The use of high temperature superconductors (HTSC) is a possible approach to this problem, being HTSC plasmonic materials at nonzero temperature. Negative dielectic constant and variety of charge carriers (electrons or holes) are further very attractive features for plasmonic applications. Characterization of the high frequency response of these materials is then necessary in order to correctly understand the optical parameters of HTSC. We report on FTIR and ellipsometry measurements on NdBa2Cu3O7-? (Nd123) and the ruthenocuprate superconductor GdSr2RuCu2O8-? (Gd1212) in optical and near infrared regime. Among YBCO-like cuprate superconductors, Nd123 presents the highest Tc (96K), and the most interesting magnetic response properties. Even more interesting, in view of use for metamaterial, is Gd1212, whose main characteristic is the coexistence, in the same cell, of superconductivity and magnetic order below Tc: Ru ions intrinsic magnetic moments order themselves below 135K, whereas superconductivity onset is at about 40K, depending on fabrication details. We performed measurements on Melt-Textured bulk samples, which present the best superconducting properties. Results confirm the promising feature of the considered materials; further analyses, also on powders and films, are in progress.

Superconductors in plasmonics and metamaterials : some experimental data

MGombos;VMocella
2013

Abstract

High frequencies (visible and near infrared) applications of metamaterials and plasmonic structures are strongly limited by dissipative losses in structures, due to poor conductivity of most used metals in this frequency range. The use of high temperature superconductors (HTSC) is a possible approach to this problem, being HTSC plasmonic materials at nonzero temperature. Negative dielectic constant and variety of charge carriers (electrons or holes) are further very attractive features for plasmonic applications. Characterization of the high frequency response of these materials is then necessary in order to correctly understand the optical parameters of HTSC. We report on FTIR and ellipsometry measurements on NdBa2Cu3O7-? (Nd123) and the ruthenocuprate superconductor GdSr2RuCu2O8-? (Gd1212) in optical and near infrared regime. Among YBCO-like cuprate superconductors, Nd123 presents the highest Tc (96K), and the most interesting magnetic response properties. Even more interesting, in view of use for metamaterial, is Gd1212, whose main characteristic is the coexistence, in the same cell, of superconductivity and magnetic order below Tc: Ru ions intrinsic magnetic moments order themselves below 135K, whereas superconductivity onset is at about 40K, depending on fabrication details. We performed measurements on Melt-Textured bulk samples, which present the best superconducting properties. Results confirm the promising feature of the considered materials; further analyses, also on powders and films, are in progress.
2013
Istituto per la Microelettronica e Microsistemi - IMM
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
FTIR
Ellipsometry
High Temperature Superconductors
Plasmonics
Melt-Textured Growth
Magnetic Ordering
Cuprates and Ruthenocuprates
Metamaterials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/212286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact