We report on a spectroscopic technique named intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) employed for sensitive trace-gas detection in the mid-infrared spectral region. It is based on a combination of QEPAS with a buildup optical cavity. The sensor includes a distributed feedback quantum cascade laser emitting at 4.33 mu m. We achieved a laser optical power buildup factor of similar to 500, which corresponds to an intracavity laser power of similar to 0.75 W. CO2 has been selected as the target molecule for the I-QEPAS demonstration. We achieved a detection sensitivity of 300 parts per trillion for 4 s integration time, corresponding to a noise equivalent absorption coefficient of 1.4 x 10(-8) cm(-1) and a normalized noise-equivalent absorption of 3.2 x 10(-10) W cm(-1) Hz(-1/2). (C) 2014 AIP Publishing LLC.

Intracavity quartz-enhanced photoacoustic sensor

Borri S;Patimisco P;Galli I;Mazzotti D;Giusfredi G;Scamarcio G;De Natale P;Spagnolo V
2014

Abstract

We report on a spectroscopic technique named intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) employed for sensitive trace-gas detection in the mid-infrared spectral region. It is based on a combination of QEPAS with a buildup optical cavity. The sensor includes a distributed feedback quantum cascade laser emitting at 4.33 mu m. We achieved a laser optical power buildup factor of similar to 500, which corresponds to an intracavity laser power of similar to 0.75 W. CO2 has been selected as the target molecule for the I-QEPAS demonstration. We achieved a detection sensitivity of 300 parts per trillion for 4 s integration time, corresponding to a noise equivalent absorption coefficient of 1.4 x 10(-8) cm(-1) and a normalized noise-equivalent absorption of 3.2 x 10(-10) W cm(-1) Hz(-1/2). (C) 2014 AIP Publishing LLC.
2014
Istituto di fotonica e nanotecnologie - IFN
Istituto Nazionale di Ottica - INO
quantum cascade laser
MU-M
carbon-dioxide
qepas sensor
spectroscopy
CO2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/225752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? ND
social impact