The most important pathogen for apples is Penicillium expansum that is the causal organism of blue mould. Postharvest losses are controlled with chemical fungicides such as TBZ but a growing concern for human health and a greater awareness for environmental conservation have multiplied the studies on new ecological technologies. In the search of new environment and consumer friendly technologies that can reduce toxic residues, the use of GRAS compounds represent a valid alternative to the use of synthetic postharvest fungicides. The aims of the present work were: (1) To evaluate the effectiveness of different GRAS compounds in the control of P. expansum in artificially inoculated fruit; (2) To assess the capability of injured and treated fruit with GRAS compounds, used alone or combined, to heal the wounds in order to resist to infection. Fruit was injured with a steel rod and after 1 hour was (1) Inoculated with the pathogen and after 24 hours treated or (2) Treated and after 24 hours inoculated. Treatments were performed with the following compounds: sodium bicarbonate (SBC), boric acid (BA) and calcium chloride (CC) by using a 1% solution for all of them. After 9 or 14 days fruit lesion diameters were assessed. In the trial (1) the combined treatment with BA and SBC was the most effective reducing the lesion diameter by 86.5% with respect to untreated fruit, after 9 days from infection. A good pathogen control was also obtained with BA used alone or combined with CC. When the treatment was performed before infection the best results were achieved with the combination of SBC and CC, with 87% of reduction of the lesion diameter. The addition of CC also reduced the lesion if combined with BA (66.8%). These preliminary results showed that GRAS compounds can be effective in reducing blue mold by a direct effect on the pathogen, and by modulating fruit responses enhancing host resistance.

Effect of different GRAS compounds in the control of apples blue mould.

Venditti T;Cubaiu L;Ladu G;D'Hallewin G
2013

Abstract

The most important pathogen for apples is Penicillium expansum that is the causal organism of blue mould. Postharvest losses are controlled with chemical fungicides such as TBZ but a growing concern for human health and a greater awareness for environmental conservation have multiplied the studies on new ecological technologies. In the search of new environment and consumer friendly technologies that can reduce toxic residues, the use of GRAS compounds represent a valid alternative to the use of synthetic postharvest fungicides. The aims of the present work were: (1) To evaluate the effectiveness of different GRAS compounds in the control of P. expansum in artificially inoculated fruit; (2) To assess the capability of injured and treated fruit with GRAS compounds, used alone or combined, to heal the wounds in order to resist to infection. Fruit was injured with a steel rod and after 1 hour was (1) Inoculated with the pathogen and after 24 hours treated or (2) Treated and after 24 hours inoculated. Treatments were performed with the following compounds: sodium bicarbonate (SBC), boric acid (BA) and calcium chloride (CC) by using a 1% solution for all of them. After 9 or 14 days fruit lesion diameters were assessed. In the trial (1) the combined treatment with BA and SBC was the most effective reducing the lesion diameter by 86.5% with respect to untreated fruit, after 9 days from infection. A good pathogen control was also obtained with BA used alone or combined with CC. When the treatment was performed before infection the best results were achieved with the combination of SBC and CC, with 87% of reduction of the lesion diameter. The addition of CC also reduced the lesion if combined with BA (66.8%). These preliminary results showed that GRAS compounds can be effective in reducing blue mold by a direct effect on the pathogen, and by modulating fruit responses enhancing host resistance.
2013
bicarbonate
boric acid
calcium chloride
fungicide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/265425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact