We study a charge pump realized with an elastically deformable quantum dot whose center of mass follows a nonlinear stochastic dynamics. The interplay of noise, nonlinear effects, dissipation and interaction with an external time-dependent driving on the pumped charge is fully analyzed. The results show that the quantum pumping mechanism not only is not destroyed by the force fluctuations, but it becomes stronger when the forcing signal frequency is tuned close to the resonance of the vibrational mode. The robustness of the quantum pump with temperature is also investigated and an exponential decay of the pumped charge is found when the coupling to the vibrational mode is present. Implications of our results for nanoelectromechanical systems are also discussed. © 2014 IOP Publishing Ltd.

Noise-assisted charge pump in elastically deformable molecular junctions

Perroni C A;Citro Roberta;Cataudella Vittorio
2014

Abstract

We study a charge pump realized with an elastically deformable quantum dot whose center of mass follows a nonlinear stochastic dynamics. The interplay of noise, nonlinear effects, dissipation and interaction with an external time-dependent driving on the pumped charge is fully analyzed. The results show that the quantum pumping mechanism not only is not destroyed by the force fluctuations, but it becomes stronger when the forcing signal frequency is tuned close to the resonance of the vibrational mode. The robustness of the quantum pump with temperature is also investigated and an exponential decay of the pumped charge is found when the coupling to the vibrational mode is present. Implications of our results for nanoelectromechanical systems are also discussed. © 2014 IOP Publishing Ltd.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
adiabatic pumping
electron-vibration coupling
electronic transport in mesoscopic systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact