Reconfigurable Transportation Systems (RTSs) are conceived as multiple independent modules to implement alternative inbound logistic systems' configurations. Together with mechatronic interfaces and distributed control solutions, the full exploitation of RTS plug&produce features rely on flexible production management policies. The current work proposes an innovative approach to dynamically compute part routings in RTSs. It is designed as fully distributed across transportation modules; based on current RTS' topology and status, it ensures the autonomy in selecting routing decisions while embracing global and local evolving optimization strategies. The benefits of the approach have been investigated with reference to an industrial case study. © 2014 CIRP.
Intelligent dynamic part routing policies in Plug&Produce Reconfigurable Transportation Systems
Cesta Amedeo;Orlandini Andrea;Rasconi Riccardo;
2014
Abstract
Reconfigurable Transportation Systems (RTSs) are conceived as multiple independent modules to implement alternative inbound logistic systems' configurations. Together with mechatronic interfaces and distributed control solutions, the full exploitation of RTS plug&produce features rely on flexible production management policies. The current work proposes an innovative approach to dynamically compute part routings in RTSs. It is designed as fully distributed across transportation modules; based on current RTS' topology and status, it ensures the autonomy in selecting routing decisions while embracing global and local evolving optimization strategies. The benefits of the approach have been investigated with reference to an industrial case study. © 2014 CIRP.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.