We consider a system formed by an array of Bose-Einstein condensates trapped in a harmonic potential with a superimposed periodic optical potential. Starting from the boson field Hamiltonian, appropriate to describe a dilute gas of bosonic atoms, we reformulate the system dynamics within the Bose-Hubbard model scenario. Then we analyse the effective dynamics of the system when the optical-potential depth is suddenly varied according to a procedure applied in many of the recent experiments on superfluid-Mott transition in Bose-Einstein condensates. Initially the condensate array generated in a weak optical potential is assumed to be in the superfluid ground state which is well described in terms of coherent states. At a given time, the optical-potential depth is suddenly increased and, after a waiting time, it is quickly decreased so that the initial depth is restored. We compute the system-state evolution and show that the potential jump brings on an excitation of the system, incorporated in the final condensate wavefunctions, whose effects are analysed in terms of two-site correlation functions and of on-site population oscillations. Also we show how too long a waiting time can destroy completely the coherence of the final state, making it unobservable.

From the superfluid to the Mott regime and back: triggering a non-trivial dynamics in an array of coupled condensates

Buonsante P;Franzosi R;
2004

Abstract

We consider a system formed by an array of Bose-Einstein condensates trapped in a harmonic potential with a superimposed periodic optical potential. Starting from the boson field Hamiltonian, appropriate to describe a dilute gas of bosonic atoms, we reformulate the system dynamics within the Bose-Hubbard model scenario. Then we analyse the effective dynamics of the system when the optical-potential depth is suddenly varied according to a procedure applied in many of the recent experiments on superfluid-Mott transition in Bose-Einstein condensates. Initially the condensate array generated in a weak optical potential is assumed to be in the superfluid ground state which is well described in terms of coherent states. At a given time, the optical-potential depth is suddenly increased and, after a waiting time, it is quickly decreased so that the initial depth is restored. We compute the system-state evolution and show that the potential jump brings on an excitation of the system, incorporated in the final condensate wavefunctions, whose effects are analysed in terms of two-site correlation functions and of on-site population oscillations. Also we show how too long a waiting time can destroy completely the coherence of the final state, making it unobservable.
2004
INFM (attivo dal 18/11/1923 al 31/12/2021)
File in questo prodotto:
File Dimensione Formato  
prod_315428-doc_91704.pdf

non disponibili

Descrizione: From the superfluid to the Mott regime and back: triggering a non-trivial dynamics in an array of coupled condensates
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 144.13 kB
Formato Adobe PDF
144.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/286118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact