The action of molecular interaction between a fluid and an adsorbent results in adsorption and wetting phenomena. However, the adsorbent is also submitted to the action of the molecular forces. In order to provide a large adsorption capacity, adsorbents with a large specific surface area are preferable. For this reason, for the study of adsorption phenomena, porous silicon is a material of great interest. Wetting phenomena in porous silicon layers are experimentally investigated by Raman scattering. The experimental results prove a reversible blue-shift of Raman spectra of wetted porous silicon layers with isopropanol or ethanol with respect to unperturbed layers. We ascribe the shift to a compressive stress due to the increased lattice mismatch between the porous silicon layer and the bulk silicon substrate in wetting conditions. The use of two liquids having quite similar density and surface tension resulted, as expected, in quite comparable blue shift of the peak. This effect may be conveniently used in sensing applications of liquids on porous silicon layers.

Study of the effects on the Raman spectra of adsorption strain in porous silicon

Ferrara MA;Sirleto L;Rendina I
2007

Abstract

The action of molecular interaction between a fluid and an adsorbent results in adsorption and wetting phenomena. However, the adsorbent is also submitted to the action of the molecular forces. In order to provide a large adsorption capacity, adsorbents with a large specific surface area are preferable. For this reason, for the study of adsorption phenomena, porous silicon is a material of great interest. Wetting phenomena in porous silicon layers are experimentally investigated by Raman scattering. The experimental results prove a reversible blue-shift of Raman spectra of wetted porous silicon layers with isopropanol or ethanol with respect to unperturbed layers. We ascribe the shift to a compressive stress due to the increased lattice mismatch between the porous silicon layer and the bulk silicon substrate in wetting conditions. The use of two liquids having quite similar density and surface tension resulted, as expected, in quite comparable blue shift of the peak. This effect may be conveniently used in sensing applications of liquids on porous silicon layers.
2007
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact