This work reports the morphological and chemical characterization of multiferroic BiFeO3 polycrystalline thin films grown on Si(111) by RF-sputtering. Results are shown for a large set of samples and a wide array of experimental techniques, including imaging (atomic/piezoresponse force microscopy) and spectroscopic (?-Raman, X-ray photoemission, X-ray diffraction) probes. Through growth and post-growth annealing treatment, a fine control over stoichiometry, grain size, grain orientation, crystal order and surface roughness is achieved. In particular, the grain size can be tailored from nanocrystals to large micrometric plates as a function of the annealing temperature. For the optimal stoichiometric sample, an additional X-ray absorption and magnetic circular dichroism analysis has been carried out, which provides high quality spectra comparable with epitaxial films and further proves the expected strong local antiferromagnetic order

Grain size and stoichiometry control over RF-sputtered multiferroic BiFeO3 thin films on silicon substrates

Magnano Elena;Bondino Federica;Nappini Silvia
2015

Abstract

This work reports the morphological and chemical characterization of multiferroic BiFeO3 polycrystalline thin films grown on Si(111) by RF-sputtering. Results are shown for a large set of samples and a wide array of experimental techniques, including imaging (atomic/piezoresponse force microscopy) and spectroscopic (?-Raman, X-ray photoemission, X-ray diffraction) probes. Through growth and post-growth annealing treatment, a fine control over stoichiometry, grain size, grain orientation, crystal order and surface roughness is achieved. In particular, the grain size can be tailored from nanocrystals to large micrometric plates as a function of the annealing temperature. For the optimal stoichiometric sample, an additional X-ray absorption and magnetic circular dichroism analysis has been carried out, which provides high quality spectra comparable with epitaxial films and further proves the expected strong local antiferromagnetic order
2015
Istituto Officina dei Materiali - IOM -
BiFeO3
BACH beamline
XMCD
XAS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact