Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes

Pb2+ Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus thermophilus

Barbara Nicolaus;Annarita Poli;Paola Di Donato;Ida Romano;Florinda Fratianni;Filomena Nazzaro;Pierangelo Orlando;
2016

Abstract

Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes
2016
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto di Scienze dell'Alimentazione - ISA
heavy metals
Thermus thermophilus
lead effects on lipid
DNA and protein
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact