Machine learning offers two basic strategies for morphology induction: lexical segmentation and surface word relation. The first one assumes that words can be segmented into morphemes. Inducing a novel inflected form requires identification of morphemic constituents and a strategy for their recombination. The second approach dispenses with segmentation: lexical representations form part of a network of associatively related inflected forms. Production of a novel form consists in filling in one empty node in the network. Here, we present the results of a recurrent LSTM network that learns to fill in paradigm cells of incomplete verb paradigms. Although the process is not based on morpheme segmentation, the model shows sensitivity to stem selection and stem-ending boundaries.
La letteratura offre due strategie di base per l'induzione morfologica. La prima presuppone la segmentazione delle forme lessicali in morfemi e genera parole nuove ricombinando morfemi conosciuti; la seconda si basa sulle relazioni di unaforma con le altre forme del suo paradigma, e genera una parola sconosciuta riempiendo una cella vuota del paradigma. In questo articolo, presentiamo i risultati di una rete LSTM ricorrente, capace di imparare a generare nuove forme verbali a partire da forme già note non segmentate. Ciononostante, la rete acquisisce una conoscenza implicita del tema verbale e del confine con la terminazione flessionale.
How "deep" is learning word inflection?
Cardillo Franco AlbertoPrimo
;Ferro Marcello
Secondo
;Marzi ClaudiaPenultimo
;Pirrelli VitoUltimo
2017
Abstract
Machine learning offers two basic strategies for morphology induction: lexical segmentation and surface word relation. The first one assumes that words can be segmented into morphemes. Inducing a novel inflected form requires identification of morphemic constituents and a strategy for their recombination. The second approach dispenses with segmentation: lexical representations form part of a network of associatively related inflected forms. Production of a novel form consists in filling in one empty node in the network. Here, we present the results of a recurrent LSTM network that learns to fill in paradigm cells of incomplete verb paradigms. Although the process is not based on morpheme segmentation, the model shows sensitivity to stem selection and stem-ending boundaries.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.anceserie | CEUR WORKSHOP PROCEEDINGS | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Cardillo Franco Alberto | en |
| dc.authority.people | Ferro Marcello | en |
| dc.authority.people | Marzi Claudia | en |
| dc.authority.people | Pirrelli Vito | en |
| dc.collection.id.s | 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d | * |
| dc.collection.name | 04.01 Contributo in Atti di convegno | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.date.accessioned | 2024/02/19 08:03:18 | - |
| dc.date.available | 2024/02/19 08:03:18 | - |
| dc.date.firstsubmission | 2024/09/26 16:59:35 | * |
| dc.date.issued | 2017 | - |
| dc.date.submission | 2024/09/26 16:59:35 | * |
| dc.description.abstracteng | Machine learning offers two basic strategies for morphology induction: lexical segmentation and surface word relation. The first one assumes that words can be segmented into morphemes. Inducing a novel inflected form requires identification of morphemic constituents and a strategy for their recombination. The second approach dispenses with segmentation: lexical representations form part of a network of associatively related inflected forms. Production of a novel form consists in filling in one empty node in the network. Here, we present the results of a recurrent LSTM network that learns to fill in paradigm cells of incomplete verb paradigms. Although the process is not based on morpheme segmentation, the model shows sensitivity to stem selection and stem-ending boundaries. | - |
| dc.description.abstractita | La letteratura offre due strategie di base per l'induzione morfologica. La prima presuppone la segmentazione delle forme lessicali in morfemi e genera parole nuove ricombinando morfemi conosciuti; la seconda si basa sulle relazioni di unaforma con le altre forme del suo paradigma, e genera una parola sconosciuta riempiendo una cella vuota del paradigma. In questo articolo, presentiamo i risultati di una rete LSTM ricorrente, capace di imparare a generare nuove forme verbali a partire da forme già note non segmentate. Ciononostante, la rete acquisisce una conoscenza implicita del tema verbale e del confine con la terminazione flessionale. | - |
| dc.description.affiliations | Istituto di Linguistica Computazionale ILC-CNR, Pisa, Italy | - |
| dc.description.allpeople | Cardillo, FRANCO ALBERTO; Ferro, Marcello; Marzi, Claudia; Pirrelli, Vito | - |
| dc.description.allpeopleoriginal | Cardillo, Franco Alberto; Ferro, Marcello; Marzi, Claudia; Pirrelli, Vito | en |
| dc.description.fulltext | open | en |
| dc.description.note | ISSN 1613-0073 | en |
| dc.description.numberofauthors | 4 | - |
| dc.identifier.doi | 10.4000/books.aaccademia.2314 | en |
| dc.identifier.isbn | 978-88-99982-76-8 | en |
| dc.identifier.scopus | 2-s2.0-85037368972 | en |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/326587 | - |
| dc.identifier.url | http://www.scopus.com/record/display.url?eid=2-s2.0-85037368972&origin=inward | en |
| dc.language.iso | eng | en |
| dc.miur.last.status.update | 2024-09-26T14:59:43Z | * |
| dc.publisher.country | DEU | en |
| dc.publisher.name | Accademia University Press | en |
| dc.publisher.place | Torino | en |
| dc.relation.alleditors | R. Basili; M. Nissim; G. Satta | en |
| dc.relation.conferencedate | 11-13/12/2017 | en |
| dc.relation.conferencename | Fourth Italian Conference on Computational Linguistics | en |
| dc.relation.conferenceplace | Roma | en |
| dc.relation.firstpage | 77 | en |
| dc.relation.ispartofbook | Proceedings of the Fourth Italian Conference on Computational Linguistics (CLiC-it 2017) | en |
| dc.relation.lastpage | 82 | en |
| dc.relation.medium | ELETTRONICO | en |
| dc.relation.numberofpages | 6 | en |
| dc.relation.volume | 2006 | en |
| dc.subject.keywordseng | LSTM | - |
| dc.subject.keywordseng | Morphology induction | - |
| dc.subject.keywordseng | Cognitive modelling | - |
| dc.subject.singlekeyword | LSTM | * |
| dc.subject.singlekeyword | Morphology induction | * |
| dc.subject.singlekeyword | Cognitive modelling | * |
| dc.title | How "deep" is learning word inflection? | en |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | - |
| dc.type.full | 04 Contributo in convegno::04.01 Contributo in Atti di convegno | it |
| dc.type.invited | contributo | en |
| dc.type.miur | 273 | - |
| dc.type.referee | Esperti anonimi | en |
| dc.ugov.descaux1 | 381090 | - |
| iris.mediafilter.data | 2025/04/16 03:55:53 | * |
| iris.orcid.lastModifiedDate | 2024/12/06 16:07:29 | * |
| iris.orcid.lastModifiedMillisecond | 1733497649114 | * |
| iris.scopus.extIssued | 2017 | - |
| iris.scopus.extTitle | How “deep” is learning word inflection? | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | publisher | * |
| iris.unpaywall.bestoaversion | publishedVersion | * |
| iris.unpaywall.doi | 10.4000/books.aaccademia.2314 | * |
| iris.unpaywall.hosttype | publisher | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://doi.org/10.4000/books.aaccademia.2314 | * |
| iris.unpaywall.license | cc-by-nc-nd | * |
| iris.unpaywall.metadataCallLastModified | 10/12/2025 03:56:22 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1765335382079 | - |
| iris.unpaywall.oastatus | hybrid | * |
| scopus.authority.anceserie | CEUR WORKSHOP PROCEEDINGS###1613-0073 | * |
| scopus.category | 1700 | * |
| scopus.contributor.affiliation | Istituto di Linguistica Computazionale ILC-CNR | - |
| scopus.contributor.affiliation | Istituto di Linguistica Computazionale ILC-CNR | - |
| scopus.contributor.affiliation | Istituto di Linguistica Computazionale ILC-CNR | - |
| scopus.contributor.affiliation | Istituto di Linguistica Computazionale ILC-CNR | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.auid | 57191090133 | - |
| scopus.contributor.auid | 15759406100 | - |
| scopus.contributor.auid | 36621334800 | - |
| scopus.contributor.auid | 14833305800 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Franco Alberto | - |
| scopus.contributor.name | Marcello | - |
| scopus.contributor.name | Claudia | - |
| scopus.contributor.name | Vito | - |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.surname | Cardillo | - |
| scopus.contributor.surname | Ferro | - |
| scopus.contributor.surname | Marzi | - |
| scopus.contributor.surname | Pirrelli | - |
| scopus.date.issued | 2017 | * |
| scopus.description.abstracteng | Machine learning offers two basic strategies for morphology induction: lexical segmentation and surface word relation. The first one assumes that words can be segmented into morphemes. Inducing a novel inflected form requires identification of morphemic constituents and a strategy for their recombination. The second approach dispenses with segmentation: lexical representations form part of a network of associatively related inflected forms. Production of a novel form consists in filling in one empty node in the network. Here, we present the results of a recurrent LSTM network that learns to fill in paradigm cells of incomplete verb paradigms. Although the process is not based on morpheme segmentation, the model shows sensitivity to stem selection and stem-ending boundaries. | * |
| scopus.description.allpeopleoriginal | Cardillo F.A.; Ferro M.; Marzi C.; Pirrelli V. | * |
| scopus.differences | scopus.relation.conferencename | * |
| scopus.differences | scopus.publisher.name | * |
| scopus.differences | scopus.relation.conferencedate | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.differences | scopus.identifier.doi | * |
| scopus.differences | scopus.relation.conferenceplace | * |
| scopus.differences | scopus.title | * |
| scopus.document.type | cp | * |
| scopus.document.types | cp | * |
| scopus.identifier.doi | 10.4000/books.aaccademia.2372 | * |
| scopus.identifier.pui | 619585991 | * |
| scopus.identifier.scopus | 2-s2.0-85037368972 | * |
| scopus.journal.sourceid | 21100218356 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | CEUR-WS | * |
| scopus.relation.conferencedate | 2017 | * |
| scopus.relation.conferencename | 4th Italian Conference on Computational Linguistics, CLiC-it 2017 | * |
| scopus.relation.conferenceplace | ita | * |
| scopus.relation.volume | 2006 | * |
| scopus.title | How “deep” is learning word inflection? | * |
| scopus.titleeng | How “deep” is learning word inflection? | * |
| Appare nelle tipologie: | 04.01 Contributo in Atti di convegno | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_381090-doc_129229.pdf
accesso aperto
Descrizione: How "deep" is learning word inflection?
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
812.89 kB
Formato
Adobe PDF
|
812.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


