This paper presents a concurrent whole-body control (cWBC) for human-exoskeleton systems that are tightly coupled at a Cartesian level (e.g., feet, hands, torso). The exoskeleton generates joint torques that i) cancel the effects of gravity on the coupled system, ii) perform a primary task (e.g., maintaining the balance of the system), and iii) exploit the kinematic redundancy of the system to amplify the forces exerted by the human operator. The coupled dynamic system is demonstrated to be passive, as its overall energy always goes dissipated until a minimum is reached. The proposed method is designed specifically to control exoskeletons for power augmentation worn by healthy operators in applications such as manufacturing, as it allows to increase the worker's capabilities, therefore reducing the risk of injuries.

A Passivity-based Concurrent Whole-Body Control (cWBC) of Persistently Interacting Human-Exoskeleton Systems

Giovanni Legnani;Lorenzo Molinari Tosatti
2017

Abstract

This paper presents a concurrent whole-body control (cWBC) for human-exoskeleton systems that are tightly coupled at a Cartesian level (e.g., feet, hands, torso). The exoskeleton generates joint torques that i) cancel the effects of gravity on the coupled system, ii) perform a primary task (e.g., maintaining the balance of the system), and iii) exploit the kinematic redundancy of the system to amplify the forces exerted by the human operator. The coupled dynamic system is demonstrated to be passive, as its overall energy always goes dissipated until a minimum is reached. The proposed method is designed specifically to control exoskeletons for power augmentation worn by healthy operators in applications such as manufacturing, as it allows to increase the worker's capabilities, therefore reducing the risk of injuries.
2017
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Physical Human-Robot Interaction
Exoxkeleton
Whole-Body Control
Torque-Control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact