Coeliac disease (CD) is characterized by an intestinal lesion sustained by an abnormal mucosal T-cell response to wheat gliadin. An immunological approach that is able to suppress this immune response is a perspective worth pursuing. Several strategies of antigen administration have been aimed at the downregulation of pathogenic T-cells. In particular, we previously reported a significant suppression of the systemic cell-mediated response toward wheat gliadin in DQ8 transgenic mice receiving nasally a recombinant ?-gliadin. To gain further insight about the cellular mechanisms underlying the tolerogenic properties of this molecule, we analysed different preparations of the recombinant ?-gliadin, alone or conjugated to the adjuvant cholera toxin (CT), by in vitro challenge with spleen CD4+ T cells from gliadin-sensitized DQ8 tg mice. We found that a partially purified preparation of recombinant ?-gliadin (r-gliadin) induced a significantly higher production of IFN-? than native gliadin as well as HPLC purified r-gliadin. Interestingly, r-gliadin, but not HPLC purified r-gliadin, stimulated the gliadin-specific expression of IL-10 in CD4+ T cells. No significant cytotoxic effect was induced by r-gliadin in MODE-K cells, a murine model of enterocytes. Notably, a conjugate CT-r-gliadin failed in stimulating IFN-?, whereas IL-10 secretion was still induced in gliadin-specific CD4+ T cells. In conclusion, our results showed that DCs, pulsed with CT-r-gliadin in vitro, could modulate the ongoing Th1-like T cell response toward wheat gliadin. This finding provides new insight into the design of immunomodulatory protocols potentially useful for CD.

Immunomodulatory activity of recombinant ?-gliadin conjugated to cholera toxin in DQ8 transgenic mice

Luongo D;Maurano F;Bergamo P;Rossi M
2017

Abstract

Coeliac disease (CD) is characterized by an intestinal lesion sustained by an abnormal mucosal T-cell response to wheat gliadin. An immunological approach that is able to suppress this immune response is a perspective worth pursuing. Several strategies of antigen administration have been aimed at the downregulation of pathogenic T-cells. In particular, we previously reported a significant suppression of the systemic cell-mediated response toward wheat gliadin in DQ8 transgenic mice receiving nasally a recombinant ?-gliadin. To gain further insight about the cellular mechanisms underlying the tolerogenic properties of this molecule, we analysed different preparations of the recombinant ?-gliadin, alone or conjugated to the adjuvant cholera toxin (CT), by in vitro challenge with spleen CD4+ T cells from gliadin-sensitized DQ8 tg mice. We found that a partially purified preparation of recombinant ?-gliadin (r-gliadin) induced a significantly higher production of IFN-? than native gliadin as well as HPLC purified r-gliadin. Interestingly, r-gliadin, but not HPLC purified r-gliadin, stimulated the gliadin-specific expression of IL-10 in CD4+ T cells. No significant cytotoxic effect was induced by r-gliadin in MODE-K cells, a murine model of enterocytes. Notably, a conjugate CT-r-gliadin failed in stimulating IFN-?, whereas IL-10 secretion was still induced in gliadin-specific CD4+ T cells. In conclusion, our results showed that DCs, pulsed with CT-r-gliadin in vitro, could modulate the ongoing Th1-like T cell response toward wheat gliadin. This finding provides new insight into the design of immunomodulatory protocols potentially useful for CD.
2017
Istituto di Scienze dell'Alimentazione - ISA
Cholera toxin; Coeliac disease; Gliadin; Immunomodulation; T cell immunity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact