Aims: Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. Methods and Results: Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. Conclusions: This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. Significance and Impact of the Study: New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.

Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae

Galli A;Cervelli T
2017

Abstract

Aims: Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. Methods and Results: Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. Conclusions: This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. Significance and Impact of the Study: New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.
2017
Istituto di Fisiologia Clinica - IFC
adeno-associated virus
adenovirus E4orf6 and E1b55k
Saccharomyces cerevisiae
single-stranded DNA
virus-like particles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact