Antimicrobial peptides (AMPs) represent crucial components of the natural immune defense machinery of different organisms. Generally, they are short and positively charged, and bind to and destabilize bacterial cytoplasmic membranes, ultimately leading to cell death. Natural proteolytic cleavage of ?s2-casein in bovine milk generates the antimicrobial peptides casocidin I and II. In the current study, we report for the first time on a detailed structure characterization of casocidins in solution by means of Nuclear Magnetic Resonance spectroscopy (NMR). Structural studies were conducted in H2O and different membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE) and lipid anionic and zwitterionic vesicles. For both peptides, results indicate a mainly disordered conformation in H2O, with a few residues in a partial helical structure. No wide increase of order occurs upon interaction with lipid vesicles. Conversely, peptide conformation becomes highly ordered in presence of TFE, with both casocidins presenting a large helical content. Our data point out a preference of casocidins to interact with model anionic membranes. These results are compatible with possible mechanisms of action underlying the antimicrobial activity of casocidins that ultimately may affect membrane bilayer stability.

The antimicrobial peptides casocidins I and II: solution structural studies in water and different membrane-mimetic environments.

Mercurio FA;Scaloni A;Caira S;Leone M
2019

Abstract

Antimicrobial peptides (AMPs) represent crucial components of the natural immune defense machinery of different organisms. Generally, they are short and positively charged, and bind to and destabilize bacterial cytoplasmic membranes, ultimately leading to cell death. Natural proteolytic cleavage of ?s2-casein in bovine milk generates the antimicrobial peptides casocidin I and II. In the current study, we report for the first time on a detailed structure characterization of casocidins in solution by means of Nuclear Magnetic Resonance spectroscopy (NMR). Structural studies were conducted in H2O and different membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE) and lipid anionic and zwitterionic vesicles. For both peptides, results indicate a mainly disordered conformation in H2O, with a few residues in a partial helical structure. No wide increase of order occurs upon interaction with lipid vesicles. Conversely, peptide conformation becomes highly ordered in presence of TFE, with both casocidins presenting a large helical content. Our data point out a preference of casocidins to interact with model anionic membranes. These results are compatible with possible mechanisms of action underlying the antimicrobial activity of casocidins that ultimately may affect membrane bilayer stability.
2019
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
NMR
TFE
antimicrobial peptides
casocidins
conformational switch
lipid vesicles
File in questo prodotto:
File Dimensione Formato  
prod_391774-doc_143067.pdf

solo utenti autorizzati

Descrizione: The antimicrobial peptides casocidins I and II ....
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/345268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact