Several recent works have shown that K-mer sequence representation of a DNA sequence can be used for classification or identification of nucleosome positioning related sequences. This representation can be computationally expensive when k grows, making the complexity in spaces of exponential dimension. This issue affects significantly the classification task computed by a general machine learning algorithm used for the purpose of sequence classification. In this paper, we investigate the advantage offered by the so-called Variable Ranking Feature Selection method to select the most informative K- mers associated to a set of DNA sequences, for the final purpose of nucleosome/linker classification by a deep learning network. Results computed on three public datasets show the effectiveness of the adopted feature selection method.
Variable ranking feature selection for the identification of nucleosome related sequences
Rizzo R;Fiannaca A;La Rosa M;Urso A
2018
Abstract
Several recent works have shown that K-mer sequence representation of a DNA sequence can be used for classification or identification of nucleosome positioning related sequences. This representation can be computationally expensive when k grows, making the complexity in spaces of exponential dimension. This issue affects significantly the classification task computed by a general machine learning algorithm used for the purpose of sequence classification. In this paper, we investigate the advantage offered by the so-called Variable Ranking Feature Selection method to select the most informative K- mers associated to a set of DNA sequences, for the final purpose of nucleosome/linker classification by a deep learning network. Results computed on three public datasets show the effectiveness of the adopted feature selection method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


