The bipolar effect of GaAs substrate and nearby layers on photovoltage of vertical metamorphic InAs/InGaAs in comparison with pseudomorphic (conventional) InAs/GaAs quantum dot (QD) structures were studied. Both metamorphic and pseudomorphic structures were grown by molecular beam epitaxy, using bottom contacts at either the grown n(+)-buffers or the GaAs substrate. The features related to QDs, wetting layers, and buffers have been identified in the photoelectric spectra of both the buffer-contacted structures, whereas the spectra of substrate-contacted samples showed the additional onset attributed to EL2 defect centers. The substrate-contacted samples demonstrated bipolar photovoltage; this was suggested to take place as a result of the competition between components related to QDs and their cladding layers with the substrate-related defects and deepest grown layer. No direct substrate effects were found in the spectra of the buffer-contacted structures. However, a notable negative influence of the n(+)-GaAs buffer layer on the photovoltage and photoconductivity signal was observed in the InAs/InGaAs structure. Analyzing the obtained results and the performed calculations, we have been able to provide insights on the design of metamorphic QD structures, which can be useful for the development of novel efficient photonic devices.

Bipolar Effects in Photovoltage of Metamorphic InAs/InGaAs/GaAs Quantum Dot Heterostructures: Characterization and Design Solutions for Light-Sensitive Devices

Seravalli L;Trevisi G;Frigeri P;Gombia E;
2017

Abstract

The bipolar effect of GaAs substrate and nearby layers on photovoltage of vertical metamorphic InAs/InGaAs in comparison with pseudomorphic (conventional) InAs/GaAs quantum dot (QD) structures were studied. Both metamorphic and pseudomorphic structures were grown by molecular beam epitaxy, using bottom contacts at either the grown n(+)-buffers or the GaAs substrate. The features related to QDs, wetting layers, and buffers have been identified in the photoelectric spectra of both the buffer-contacted structures, whereas the spectra of substrate-contacted samples showed the additional onset attributed to EL2 defect centers. The substrate-contacted samples demonstrated bipolar photovoltage; this was suggested to take place as a result of the competition between components related to QDs and their cladding layers with the substrate-related defects and deepest grown layer. No direct substrate effects were found in the spectra of the buffer-contacted structures. However, a notable negative influence of the n(+)-GaAs buffer layer on the photovoltage and photoconductivity signal was observed in the InAs/InGaAs structure. Analyzing the obtained results and the performed calculations, we have been able to provide insights on the design of metamorphic QD structures, which can be useful for the development of novel efficient photonic devices.
2017
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Defects
InAs/InGaAs
Metamorphic
Nanostructure
Photoconductivity
Photoluminescence
Photovoltage
Quantum dot
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact