Exoskeleton devices for upper limb neurorehabilitation are one of the most exploited solutions for the recovery of lost motor functions. By providing weight support, passively compensated exoskeletons allow patients to experience upper limb training. Transparency is a desirable feature of exoskeletons that describes how the device alters free movements or interferes with spontaneous muscle patterns. A pilot study on healthy subjects was conducted to evaluate the feasibility of assessing transparency in the framework of muscle synergies. For such purpose, the LIGHTarm exoskeleton prototype was used. LIGHTarm provides gravity support to the upper limb during the execution of movements in the tridimensional workspace. Surface electromyography was acquired during the execution of three daily life movements (reaching, hand-to-mouth, and hand-to-nape) in three different conditions: free movement, exoskeleton-assisted (without gravity compensation), and exoskeleton-assisted (with gravity compensation) on healthy people. Preliminary results suggest that the muscle synergy framework may provide valuable assessment of user transparency and weight support features of devices aimed at rehabilitation.

Assessing User Transparency with Muscle Synergies during Exoskeleton-Assisted Movements: A Pilot Study on the LIGHTarm Device for Neurorehabilitation

Scano Alessandro
Secondo
;
Malosio Matteo;Tosatti Lorenzo Molinari
Penultimo
;
2018

Abstract

Exoskeleton devices for upper limb neurorehabilitation are one of the most exploited solutions for the recovery of lost motor functions. By providing weight support, passively compensated exoskeletons allow patients to experience upper limb training. Transparency is a desirable feature of exoskeletons that describes how the device alters free movements or interferes with spontaneous muscle patterns. A pilot study on healthy subjects was conducted to evaluate the feasibility of assessing transparency in the framework of muscle synergies. For such purpose, the LIGHTarm exoskeleton prototype was used. LIGHTarm provides gravity support to the upper limb during the execution of movements in the tridimensional workspace. Surface electromyography was acquired during the execution of three daily life movements (reaching, hand-to-mouth, and hand-to-nape) in three different conditions: free movement, exoskeleton-assisted (without gravity compensation), and exoskeleton-assisted (with gravity compensation) on healthy people. Preliminary results suggest that the muscle synergy framework may provide valuable assessment of user transparency and weight support features of devices aimed at rehabilitation.
2018
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
exoskeleton
Muscle_Synergies
Rehabilitation
File in questo prodotto:
File Dimensione Formato  
Chiavenna 2018.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact