Many real-life signals and, in particular, in the space physics domain, exhibit variations across different temporal scales. Hence, their statistical momenta may depend on the time scale at which the signal is studied. To identify and quantify such variations, a time-frequency analysis has to be performed on these signals. The dependence of the statistical properties of a signal fluctuation on the space and time scales is the distinctive character of systems with nonlinear couplings among different modes. Hence, assessing how the statistics of signal fluctuations vary with scale will be of help in understanding the corresponding multiscale statistics of such dynamics. This paper presents a new multiscale data analysis technique, the adaptive local iterative filtering (ALIF), which allows to describe the multiscale nature of the geophysical signal studied better than via Fourier transform, and improves scale resolution with respect to discrete wavelet transform. The example of geophysical signal, to which ALIF has been applied, is ionospheric radio power scintillation on L band. ALIF appears to be a promising technique to study the small-scale structures of radio scintillation due to ionospheric turbulence.

Adaptive Local Iterative Filtering: A Promising Technique for the Analysis of Nonstationary Signals

Materassi M.;
2018

Abstract

Many real-life signals and, in particular, in the space physics domain, exhibit variations across different temporal scales. Hence, their statistical momenta may depend on the time scale at which the signal is studied. To identify and quantify such variations, a time-frequency analysis has to be performed on these signals. The dependence of the statistical properties of a signal fluctuation on the space and time scales is the distinctive character of systems with nonlinear couplings among different modes. Hence, assessing how the statistics of signal fluctuations vary with scale will be of help in understanding the corresponding multiscale statistics of such dynamics. This paper presents a new multiscale data analysis technique, the adaptive local iterative filtering (ALIF), which allows to describe the multiscale nature of the geophysical signal studied better than via Fourier transform, and improves scale resolution with respect to discrete wavelet transform. The example of geophysical signal, to which ALIF has been applied, is ionospheric radio power scintillation on L band. ALIF appears to be a promising technique to study the small-scale structures of radio scintillation due to ionospheric turbulence.
2018
Istituto dei Sistemi Complessi - ISC
ionospheric scintillation
multiscale statistics
nonlinear geophysics
time series analysis
File in questo prodotto:
File Dimensione Formato  
prod_384603-doc_188212.pdf

accesso aperto

Descrizione: Adaptive Local Iterative Filtering: A Promising Technique for the Analysis of Nonstationary Signals
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.26 MB
Formato Adobe PDF
9.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/351129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact