Laser metal deposition (LMD) shows great promise for producing large components as well as thin-walled structures by additive manufacturing. Compared to the powder bed fusion (PBF) techniques, LMD can exploit further flexibility in terms of tool path programming. Layer-by-layer rastering commonly used in SLM is applicable also to the LMD process, where overhang structures remain a complex issue in the absence of support structures. Concerning thin-walled parts with a symmetry axis or those that evolve around an axis, more efficient strategies may be developed. Hence, this work discusses the use of different part programming strategies for thin-walled structures employing an LMD system based on a 6-axis anthropomorphic robot and a 2-axis rotary table. The work compares, layer-by-layer, continuous pathway, and oriented reference plane strategies, study of process parameters, build failure mechanisms, as well as geometric errors are discussed. Successful deposition of thin-walled organic and freeform tubular components in AISI 316L is demonstrated.

Design and Pathway Programming of Organic Freeform Thin-walled Geometries Produced by Laser Metal Deposition

Stefano Mutti;Lorenzo Molinari Tosatti
2019

Abstract

Laser metal deposition (LMD) shows great promise for producing large components as well as thin-walled structures by additive manufacturing. Compared to the powder bed fusion (PBF) techniques, LMD can exploit further flexibility in terms of tool path programming. Layer-by-layer rastering commonly used in SLM is applicable also to the LMD process, where overhang structures remain a complex issue in the absence of support structures. Concerning thin-walled parts with a symmetry axis or those that evolve around an axis, more efficient strategies may be developed. Hence, this work discusses the use of different part programming strategies for thin-walled structures employing an LMD system based on a 6-axis anthropomorphic robot and a 2-axis rotary table. The work compares, layer-by-layer, continuous pathway, and oriented reference plane strategies, study of process parameters, build failure mechanisms, as well as geometric errors are discussed. Successful deposition of thin-walled organic and freeform tubular components in AISI 316L is demonstrated.
2019
Directed energy deposition
Laser Metal Deposition
Design for additive manufacturing
CAD/CAM
Anthropomorphic robot
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact