The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce4+ substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites' 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics

Predominance of z2-orbitals at the surface of both hole- and electron-doped manganites

C. Bigi;S. K. Chaluvadi;L. Maritato;C. Aruta;R. Ciancio;J. Fujii;P. Torelli;I. Vobornik;G. Panaccione;G. Rossi;P. Orgiani
2020

Abstract

The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce4+ substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites' 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics
2020
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Officina dei Materiali - IOM -
Pulsed Laser Deposition
x-ray spectroscopy
orbital properties
File in questo prodotto:
File Dimensione Formato  
Bigi_JElectSpectrRelPhen_2020.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0368204820300815-AAM.pdf

Open Access dal 05/11/2022

Descrizione: © 2020 Elsevier B.V. All rights reserved.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact