Algorithms based on Empirical Mode Decomposition (EMD) and Iterative Filtering (IF) are largely implemented for representing a signal as superposition of simpler well-behaved components called Intrinsic Mode Functions (IMFs). Although they are more suitable than traditional methods for the analysis of nonlinear and nonstationary signals, they could be easily misused if their known limitations, together with the assumptions they rely on, are not carefully considered. In this work, we examine the main pitfalls and provide caveats for the proper use of the EMD- and IF-based algorithms. Specifically, we address the problems related to boundary errors, to the presence of spikes or jumps in the signal and to the decomposition of highly-stochastic signals. The consequences of an improper usage of these techniques are discussed and clarified also by analysing real data and performing numerical simulations. Finally, we provide the reader with the best practices to maximize the quality and meaningfulness of the decomposition produced by these techniques. In particular, a technique for the extension of signal to reduce the boundary effects is proposed; a careful handling of spikes and jumps in the signal is suggested; the concept of multi-scale statistical analysis is presented to treat highly stochastic signals.

New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms

Materassi M.
2020

Abstract

Algorithms based on Empirical Mode Decomposition (EMD) and Iterative Filtering (IF) are largely implemented for representing a signal as superposition of simpler well-behaved components called Intrinsic Mode Functions (IMFs). Although they are more suitable than traditional methods for the analysis of nonlinear and nonstationary signals, they could be easily misused if their known limitations, together with the assumptions they rely on, are not carefully considered. In this work, we examine the main pitfalls and provide caveats for the proper use of the EMD- and IF-based algorithms. Specifically, we address the problems related to boundary errors, to the presence of spikes or jumps in the signal and to the decomposition of highly-stochastic signals. The consequences of an improper usage of these techniques are discussed and clarified also by analysing real data and performing numerical simulations. Finally, we provide the reader with the best practices to maximize the quality and meaningfulness of the decomposition produced by these techniques. In particular, a technique for the extension of signal to reduce the boundary effects is proposed; a careful handling of spikes and jumps in the signal is suggested; the concept of multi-scale statistical analysis is presented to treat highly stochastic signals.
2020
Istituto dei Sistemi Complessi - ISC
HILBERT-HUANG TRANSFORM; CRUDE-OIL PRICE; NEURAL-NETWORK; CLIMATE NOISE; EARTHQUAKE; EMD; SYNCHRONIZATION; HHT; IDENTIFICATION; STATISTICS
File in questo prodotto:
File Dimensione Formato  
prod_432672-doc_154586.pdf

accesso aperto

Descrizione: New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? ND
social impact