This study presents the year-round variability of the water-soluble fraction of trace ele-ments (wsTE) and rare earth elements (wsREE) among size segregated airborne particulate matter samples collected at Ny-Ålesund in the Svalbard Archipelago from 26 February 2018 to 26 February 2019. Six different aerosol dimensional fractions were collected using a multi-stage Andersen im-pactor to better understand local and global circulation with the aim of disentangling the source of inorganic tracers from specific natural or anthropogenic sources. The wsTE and wsREE content, especially in the finest fractions in remote areas, is primarily related to long-range transport and it gives valuable information on (1) the global circulation, (2) the natural sources and (3) the contribu-tion of human activities to aerosol composition. A Factor Analysis was applied to the dataset, in-cluding levoglucosan and methanesulfonic acid (MSA), to assess the possibility of using certain inorganic tracers as indicators of specific transport events or circulation regimes. We also investigate back-trajectories to determine potential source areas.

A Year-Round Measurement of Water-Soluble Trace and Rare Earth Elements in Arctic Aerosol: Possible Inorganic Tracers of Specific Events

Clara Turetta;Matteo Feltracco;Elena Barbaro;Andrea Spolaor;Carlo Barbante;Andrea Gambaro
2021

Abstract

This study presents the year-round variability of the water-soluble fraction of trace ele-ments (wsTE) and rare earth elements (wsREE) among size segregated airborne particulate matter samples collected at Ny-Ålesund in the Svalbard Archipelago from 26 February 2018 to 26 February 2019. Six different aerosol dimensional fractions were collected using a multi-stage Andersen im-pactor to better understand local and global circulation with the aim of disentangling the source of inorganic tracers from specific natural or anthropogenic sources. The wsTE and wsREE content, especially in the finest fractions in remote areas, is primarily related to long-range transport and it gives valuable information on (1) the global circulation, (2) the natural sources and (3) the contribu-tion of human activities to aerosol composition. A Factor Analysis was applied to the dataset, in-cluding levoglucosan and methanesulfonic acid (MSA), to assess the possibility of using certain inorganic tracers as indicators of specific transport events or circulation regimes. We also investigate back-trajectories to determine potential source areas.
2021
aerosol
Arctic
trace elements
rare earth elements
biomass burning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397333
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact