We investigate the mechanism of H-2 activation on Ag-modified cerium oxide surfaces, of interest for different catalytic applications. The study is performed on thin epitaxial cerium oxide films, investigated by X-ray photoemission spectroscopy to assess the changes of both the Ag oxidation state and the concentration of Ce3+ ions, O vacancies, and hydroxyl groups on the surface during thermal reduction cycles in vacuum and under hydrogen exposure. The results are interpreted using density functional theory calculations to model pristine and Ag-modified ceria surfaces. Although the reactivity of ceria toward H-2 oxidation improves when a fraction of Ce cations is substituted with Ag, the concentration of reduced Ce3+ ions in Ag-modified ceria is found to be lower than in pure ceria under the same conditions. This behavior is observed even though the number of surface oxygen vacancies caused by the thermal treatment under hydrogen exposure is larger for the Ag-modified surface. These results are explained in terms of a change of the oxidation state of the surface Ag, which is able to acquire some of the extra surface electrons created by the oxygen vacancies and the adsorbed hydrogen atoms. Our findings provide new insights into the reactivity of Ag-modified ceria, which has been proposed as a promising alternative to platinum electrodes in electrochemical devices.

Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation

Benedetti, S.;Righi, G.;Luches, P.;D'Addato, S.;Magri, R.
;
2020

Abstract

We investigate the mechanism of H-2 activation on Ag-modified cerium oxide surfaces, of interest for different catalytic applications. The study is performed on thin epitaxial cerium oxide films, investigated by X-ray photoemission spectroscopy to assess the changes of both the Ag oxidation state and the concentration of Ce3+ ions, O vacancies, and hydroxyl groups on the surface during thermal reduction cycles in vacuum and under hydrogen exposure. The results are interpreted using density functional theory calculations to model pristine and Ag-modified ceria surfaces. Although the reactivity of ceria toward H-2 oxidation improves when a fraction of Ce cations is substituted with Ag, the concentration of reduced Ce3+ ions in Ag-modified ceria is found to be lower than in pure ceria under the same conditions. This behavior is observed even though the number of surface oxygen vacancies caused by the thermal treatment under hydrogen exposure is larger for the Ag-modified surface. These results are explained in terms of a change of the oxidation state of the surface Ag, which is able to acquire some of the extra surface electrons created by the oxygen vacancies and the adsorbed hydrogen atoms. Our findings provide new insights into the reactivity of Ag-modified ceria, which has been proposed as a promising alternative to platinum electrodes in electrochemical devices.
2020
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
ceria
metal dopants
hydrogen dissociation
X-ray photoemission spectroscopy
density functional theory
reaction kinetics
surface reduction
silver
File in questo prodotto:
File Dimensione Formato  
Final_version_manuscript.pdf

Open Access dal 07/06/2021

Descrizione: Article
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact