The effects of hydrogen incorporation on carrier relaxation and recombination efficiencies in a large series of InAs self-assembled quantum dot structures deposited on InGaAs lower confining layers with different thicknesses and compositions have been addressed. With increasing H dose we observe an improvement in the radiative efficiency. By comparing steady state and time resolved photoluminescence measurements, it is established that the H passivation does not enhance the relaxation and capture efficiencies, but instead directly improves the emission yield from carriers in the dots. We therefore conclude that the H-passivated defects are located nearby, or even inside, the dots.

Characterization of hydrogen passivated defects in strain-engineered semiconductor quantum dot structures

Seravalli L.;Frigeri P.;Franchi S.
2006

Abstract

The effects of hydrogen incorporation on carrier relaxation and recombination efficiencies in a large series of InAs self-assembled quantum dot structures deposited on InGaAs lower confining layers with different thicknesses and compositions have been addressed. With increasing H dose we observe an improvement in the radiative efficiency. By comparing steady state and time resolved photoluminescence measurements, it is established that the H passivation does not enhance the relaxation and capture efficiencies, but instead directly improves the emission yield from carriers in the dots. We therefore conclude that the H-passivated defects are located nearby, or even inside, the dots.
2006
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
semiconductor quantum dots, photoluminescence, passivation, electron-hole recombination, carrier relaxation time
File in questo prodotto:
File Dimensione Formato  
Characterization of hydrogen passivated defects in strain-engineered semiconductor quantum dot structures.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 89.19 kB
Formato Adobe PDF
89.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact