We studied the dependence of the photoluminescence emission energy of InGaAs/AlGaAs quantum dot (QD) structures grown by molecular beam epitaxy as a function of the Al and In content in barriers and QDs, respectively. We show that emissions are blue-shifted by increasing both the Al content in the 0 to 0.30 range and, unexpectedly, the In composition in the 0.4 to 0.7 range; we suggest that such results stem from significant changes in QD sizes, shapes, and composition profiles. This research led to the preparation of structures with efficient light emission in the 980 nm window of optoelectronic interest.
InGaAs/AlGaAs Quantum Dot Nanostructures for 980 nm Operation
Trevisi G;Frigeri P;Franchi S
2008
Abstract
We studied the dependence of the photoluminescence emission energy of InGaAs/AlGaAs quantum dot (QD) structures grown by molecular beam epitaxy as a function of the Al and In content in barriers and QDs, respectively. We show that emissions are blue-shifted by increasing both the Al content in the 0 to 0.30 range and, unexpectedly, the In composition in the 0.4 to 0.7 range; we suggest that such results stem from significant changes in QD sizes, shapes, and composition profiles. This research led to the preparation of structures with efficient light emission in the 980 nm window of optoelectronic interest.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


