Edible jellyfish are a traditional Southeast Asian food, usually prepared as a rehydrated product using a salt and alum mixture, whereas they are uncommon in Western Countries and considered as a novel food in Europe. Here, a recently developed, new approach for jellyfish processing and stabilization with calcium salt brining was upgraded by modifying the pre-treatment step of freshly caught jellyfish and successfully applied to several edible species. Treated jellyfish ob-tained by the application of the optimized version of this method respected both quality and safety parameters set by EU law, including no pathogenic microorganisms, absence or negligible levels of histamine and of total volatile basic nitrogen, no heavy metals; and the total bacterial, yeast, and mold counts were either negligible or undetectable. Jellyfish treated by the presented method exhibited unique protein content, amino acid and fatty acid profiles, antioxidant activity, and texture. The optimized method, initially set up on Rhiszostoma pulmo, was also successfully applied to other edible jellyfish species (such as Cotylorhiza tuberculata, Phyllorhiza punctata, and Rhopilema nomadica) present in the Mediterranean Sea. This study discloses an innovative process for the preparation of jellyfish-based food products for potential future distribution in Europe.

Optimization of a Calcium-Based Treatment Method for Jellyfish to Design Food for the Future

Francesca Anna Ramires;Stefania De Domenico;Gianluca Bleve;Antonella Leone
2022

Abstract

Edible jellyfish are a traditional Southeast Asian food, usually prepared as a rehydrated product using a salt and alum mixture, whereas they are uncommon in Western Countries and considered as a novel food in Europe. Here, a recently developed, new approach for jellyfish processing and stabilization with calcium salt brining was upgraded by modifying the pre-treatment step of freshly caught jellyfish and successfully applied to several edible species. Treated jellyfish ob-tained by the application of the optimized version of this method respected both quality and safety parameters set by EU law, including no pathogenic microorganisms, absence or negligible levels of histamine and of total volatile basic nitrogen, no heavy metals; and the total bacterial, yeast, and mold counts were either negligible or undetectable. Jellyfish treated by the presented method exhibited unique protein content, amino acid and fatty acid profiles, antioxidant activity, and texture. The optimized method, initially set up on Rhiszostoma pulmo, was also successfully applied to other edible jellyfish species (such as Cotylorhiza tuberculata, Phyllorhiza punctata, and Rhopilema nomadica) present in the Mediterranean Sea. This study discloses an innovative process for the preparation of jellyfish-based food products for potential future distribution in Europe.
2022
Istituto di Scienze delle Produzioni Alimentari - ISPA
jellyfish;
novel foods;
safety;
quality;
nutritional traits;
organic calcium salts
File in questo prodotto:
File Dimensione Formato  
prod_473233-doc_192800.pdf

accesso aperto

Descrizione: Optimization of a Calcium-Based Treatment Method for Jellyfish to Design Food for the Future
Tipologia: Versione Editoriale (PDF)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact