Post-mortem and in situ evidence is presented in favor of the generation of high-velocity solid dust during the explosion-like interaction of runaway electrons with metallic plasma-facing components in FTU. The freshly-produced solid dust is the source of secondary de-localized wall damage through high-velocity impacts that lead to the formation of craters, which have been reproduced in dedicated light gas gun impact tests. This novel mechanism, of potential importance for ITER and DEMO, is further supported by surface analysis, multiple theoretical arguments and dust dynamics modeling.

Evidence for high-velocity solid dust generation induced by runaway electron impact in FTU

De Angeli M;Ripamonti D;Causa F;Daminelli G;Ghezzi F;Laguardia L;Riva G;
2022

Abstract

Post-mortem and in situ evidence is presented in favor of the generation of high-velocity solid dust during the explosion-like interaction of runaway electrons with metallic plasma-facing components in FTU. The freshly-produced solid dust is the source of secondary de-localized wall damage through high-velocity impacts that lead to the formation of craters, which have been reproduced in dedicated light gas gun impact tests. This novel mechanism, of potential importance for ITER and DEMO, is further supported by surface analysis, multiple theoretical arguments and dust dynamics modeling.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
runaway electron damage
dust generation
dust impact
crater formation
hypervelocity regime
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact