Human carbonic anhydrase IX (hCA IX) is a tumour-associated enzyme present in a limited number of normal tissues, but overexpressed in several malignant human tumours. It is a transmembrane protein, where the extracellular region consists of a greatly investigated catalytic CA domain and a much less investigated proteoglycan-like (PG) domain. Considering its important role in tumour biology, here, we report for the first time the full characterization of the PG domain, providing insights into its structural and functional features. In particular, this domain has been produced at high yields in bacterial cells and characterized by means of biochemical, biophysical and molecular dynamics studies. Results show that it belongs to the family of intrinsically disordered proteins, being globally unfolded with only some local residual polyproline II secondary structure. The observed conformational flexibility may have several important roles in tumour progression, facilitating interactions of hCA IX with partner proteins assisting tumour spreading and progression.

Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX

Langella Emma;Buonanno Martina;Dathan Nina;Leone Marilisa;De Simone Giuseppina;Monti Simona Maria
2018

Abstract

Human carbonic anhydrase IX (hCA IX) is a tumour-associated enzyme present in a limited number of normal tissues, but overexpressed in several malignant human tumours. It is a transmembrane protein, where the extracellular region consists of a greatly investigated catalytic CA domain and a much less investigated proteoglycan-like (PG) domain. Considering its important role in tumour biology, here, we report for the first time the full characterization of the PG domain, providing insights into its structural and functional features. In particular, this domain has been produced at high yields in bacterial cells and characterized by means of biochemical, biophysical and molecular dynamics studies. Results show that it belongs to the family of intrinsically disordered proteins, being globally unfolded with only some local residual polyproline II secondary structure. The observed conformational flexibility may have several important roles in tumour progression, facilitating interactions of hCA IX with partner proteins assisting tumour spreading and progression.
2018
Tumour
Polyproline II (PPII)
Intrinsically disordered protein (IDP)
Natively unfolded
Cancer
Hypoxia
Metalloenzyme
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact