In this work we present the response of a new large volume 4H Silicon Carbide (SiC) detector to 14 MeV neutrons. The device has an active thickness of 100 mu m (obtained by epitaxial growing) and an active area of 25 mm(2). Tests were conducted at the ENEA-Frascati Neutron Generator facility by using 14.1 MeV neutrons. The SiC detector performance was compared to that of Single-Crystal Diamond (SCD) detectors. The SiC response function was successfully measured and revealed a very complex structure due to the presence in the detector of both Silicon and Carbon atoms. Nevertheless, the flexibility in the SiC manufacturing and the new achievements in terms of relatively large areas (up 1x1 cm(2)) and a wide range of thicknesses makes them an interesting alternative to diamond detectors in environments where limited space and high neutron fluxes are an issue, i.e. modern neutron cameras or in-vessel tokamak measurements for the new generation fusion machines such as ITER. The absence of instabilities during neutron irradiation and the capability to withstand high neutron fluences and to follow the neutron yield suggest a straightforward use of these detectors as a neutron diagnostics.

New thick silicon carbide detectors: Response to 14 MeV neutrons and comparison with single-crystal diamonds

Rebai M;Rigamonti D;Gorini G;Tardocchi M;Labate L;La Via F;Muoio A;
2019

Abstract

In this work we present the response of a new large volume 4H Silicon Carbide (SiC) detector to 14 MeV neutrons. The device has an active thickness of 100 mu m (obtained by epitaxial growing) and an active area of 25 mm(2). Tests were conducted at the ENEA-Frascati Neutron Generator facility by using 14.1 MeV neutrons. The SiC detector performance was compared to that of Single-Crystal Diamond (SCD) detectors. The SiC response function was successfully measured and revealed a very complex structure due to the presence in the detector of both Silicon and Carbon atoms. Nevertheless, the flexibility in the SiC manufacturing and the new achievements in terms of relatively large areas (up 1x1 cm(2)) and a wide range of thicknesses makes them an interesting alternative to diamond detectors in environments where limited space and high neutron fluxes are an issue, i.e. modern neutron cameras or in-vessel tokamak measurements for the new generation fusion machines such as ITER. The absence of instabilities during neutron irradiation and the capability to withstand high neutron fluences and to follow the neutron yield suggest a straightforward use of these detectors as a neutron diagnostics.
2019
Istituto di fisica del plasma - IFP - Sede Milano
Istituto per la Microelettronica e Microsistemi - IMM
Istituto Nazionale di Ottica - INO
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
silicon carbide detectors
14 MeV neutrons
single-crystal diamonds
File in questo prodotto:
File Dimensione Formato  
prod_444181-doc_159634.pdf

solo utenti autorizzati

Descrizione: New thick silicon carbide detectors: Response to 14 MeV neutrons and comparison with single-crystal diamonds
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact