Magnetic shape-memory (MSM) Heuslers have attracted great attention in recent years for both caloric and magnetomechanical applications. Thanks to their multifunctional properties, they are also promising for a vast variety of biomedical applications. However, this topic has been rarely investigated so far. In this communication, we present the first report on the absence of cytotoxicity of MSM Heuslers in Ni-Mn-Ga epitaxial thin films and the perspective toward bioapplications. Qualitative and quantitative biological characterizations reveal that Ni-Mn- Ga films can promote the adhesion and proliferation of human fibroblasts without eliciting any cytotoxic effect. Additionally, our findings show that the morphology, composition, microstructure, phase transformation, and magnetic characteristics of the films are well preserved after the biological treatments, making the material a promising candidate for further investigations.

Magnetic Shape-Memory Heuslers Turn to Bio: Cytocompatibility of Ni-Mn-Ga Films and Biomedical Perspective

Milad Takhsha;Franco Furlani;Silvia Panseri;Francesca Casoli;Franca Albertini
2023

Abstract

Magnetic shape-memory (MSM) Heuslers have attracted great attention in recent years for both caloric and magnetomechanical applications. Thanks to their multifunctional properties, they are also promising for a vast variety of biomedical applications. However, this topic has been rarely investigated so far. In this communication, we present the first report on the absence of cytotoxicity of MSM Heuslers in Ni-Mn-Ga epitaxial thin films and the perspective toward bioapplications. Qualitative and quantitative biological characterizations reveal that Ni-Mn- Ga films can promote the adhesion and proliferation of human fibroblasts without eliciting any cytotoxic effect. Additionally, our findings show that the morphology, composition, microstructure, phase transformation, and magnetic characteristics of the films are well preserved after the biological treatments, making the material a promising candidate for further investigations.
2023
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
magnetic shape memory
Heusler alloy
epitaxial Ni-Mn-Ga film
cytotoxicity
cell adhesion
human fibroblast cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/430792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact