Efficiency and efficacy are desirable properties for any evaluation metric having to do with Standard Dynamic Range (SDR) imaging or with High Dynamic Range (HDR) imaging. However, it is a daunting task to satisfy both properties simultaneously. On the one side, existing evaluation metrics like HDR-VDP 2.2 can accurately mimic the Human Visual System (HVS), but this typically comes at a very high computational cost. On the other side, computationally cheaper alternatives (e.g., PSNR, MSE, etc.) fail to capture many crucial aspects of the HVS. In this work, we present NoR-VDPNet++, a deep learning architecture for converting full-reference accurate metrics into no-reference metrics thus reducing the computational burden. We show NoR-VDPNet++ can be successfully employed in different application scenarios.

NoR-VDPNet++: real-time no-reference image quality metrics

Banterle F;Moreo A;Carrara F;Cignoni P
2023

Abstract

Efficiency and efficacy are desirable properties for any evaluation metric having to do with Standard Dynamic Range (SDR) imaging or with High Dynamic Range (HDR) imaging. However, it is a daunting task to satisfy both properties simultaneously. On the one side, existing evaluation metrics like HDR-VDP 2.2 can accurately mimic the Human Visual System (HVS), but this typically comes at a very high computational cost. On the other side, computationally cheaper alternatives (e.g., PSNR, MSE, etc.) fail to capture many crucial aspects of the HVS. In this work, we present NoR-VDPNet++, a deep learning architecture for converting full-reference accurate metrics into no-reference metrics thus reducing the computational burden. We show NoR-VDPNet++ can be successfully employed in different application scenarios.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Measurement
Deep learning
Real-time systems
Computer architecture
Distortion
Convolutional neural networks
Imaging
HDR imaging
Objective metrics
No-reference
File in questo prodotto:
File Dimensione Formato  
prod_481854-doc_198206.pdf

accesso aperto

Descrizione: Postprint - NoR-VDPNet++: real-time no-reference image quality metrics
Tipologia: Versione Editoriale (PDF)
Dimensione 28.45 MB
Formato Adobe PDF
28.45 MB Adobe PDF Visualizza/Apri
prod_481854-doc_198228.pdf

accesso aperto

Descrizione: NoR-VDPNet++: real-time no-reference image quality metrics
Tipologia: Versione Editoriale (PDF)
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact