LeQua 2022 is a new lab for the evaluation of methods for "learning to quantify" in textual datasets, i.e., for training predictors of the relative frequencies of the classes of interest in sets of unlabelled textual documents. While these predictions could be easily achieved by first classifying all documents via a text classifier and then counting the numbers of documents assigned to the classes, a growing body of litera- ture has shown this approach to be suboptimal, and has proposed better methods. The goal of this lab is to provide a setting for the comparative evaluation of methods for learning to quantify, both in the binary set- ting and in the single-label multiclass setting. For each such setting we provide data either in ready-made vector form or in raw document form.

LeQua@CLEF2022: learning to quantify

Esuli A;Moreo A;Sebastiani F
2022

Abstract

LeQua 2022 is a new lab for the evaluation of methods for "learning to quantify" in textual datasets, i.e., for training predictors of the relative frequencies of the classes of interest in sets of unlabelled textual documents. While these predictions could be easily achieved by first classifying all documents via a text classifier and then counting the numbers of documents assigned to the classes, a growing body of litera- ture has shown this approach to be suboptimal, and has proposed better methods. The goal of this lab is to provide a setting for the comparative evaluation of methods for learning to quantify, both in the binary set- ting and in the single-label multiclass setting. For each such setting we provide data either in ready-made vector form or in raw document form.
2022
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-030-99739-7
Quantification
File in questo prodotto:
File Dimensione Formato  
prod_466133-doc_183217.pdf

Open Access dal 05/04/2023

Descrizione: Postprint - LeQua@CLEF2022: learning to Quantify
Tipologia: Versione Editoriale (PDF)
Dimensione 254.48 kB
Formato Adobe PDF
254.48 kB Adobe PDF Visualizza/Apri
prod_466133-doc_183225.pdf

Open Access dal 05/04/2023

Descrizione: LeQua@CLEF2022: learning to Quantify
Tipologia: Versione Editoriale (PDF)
Dimensione 202.19 kB
Formato Adobe PDF
202.19 kB Adobe PDF Visualizza/Apri
prod_466133-doc_183235.pdf

Open Access dal 05/04/2023

Descrizione: Preprint - LeQua@CLEF2022: learning to quantify
Tipologia: Versione Editoriale (PDF)
Dimensione 243.95 kB
Formato Adobe PDF
243.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact