The creation of highly realistic media known as deepfakes has been facilitated by the rapid development of artificial intelligence technologies, including deep learning algorithms, in recent years. Concerns about the increasing ease of creation and credibility of deepfakes have then been growing more and more, prompting researchers around the world to concentrate their efforts on the field of deepfake detection. In this same context, researchers at ISTI-CNR's AIMH Lab have conducted numerous researches, investigations and proposals to make their own contribution to combating this worrying phenomenon. In this paper, we present the main work carried out in the field of deepfake detection and synthetic content detection, conducted by our researchers and in collaboration with external organizations.

AIMH Lab approaches for deepfake detection

Coccomini DA;Esuli A;Falchi F;Gennaro C;Messina N;Amato G
2023

Abstract

The creation of highly realistic media known as deepfakes has been facilitated by the rapid development of artificial intelligence technologies, including deep learning algorithms, in recent years. Concerns about the increasing ease of creation and credibility of deepfakes have then been growing more and more, prompting researchers around the world to concentrate their efforts on the field of deepfake detection. In this same context, researchers at ISTI-CNR's AIMH Lab have conducted numerous researches, investigations and proposals to make their own contribution to combating this worrying phenomenon. In this paper, we present the main work carried out in the field of deepfake detection and synthetic content detection, conducted by our researchers and in collaboration with external organizations.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Deepfake detection
Computer vision
Syntehthic content detection
Deep Learning
File in questo prodotto:
File Dimensione Formato  
prod_489897-doc_204055.pdf

accesso aperto

Descrizione: AIMH Lab approaches for deepfake detection
Tipologia: Versione Editoriale (PDF)
Dimensione 156.73 kB
Formato Adobe PDF
156.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact