Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation.
PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies
Cardillo F. A.;Debole F.;Straccia U.
2024
Abstract
Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | FUZZY SETS AND SYSTEMS | en |
| dc.authority.orgunit | Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Cardillo F. A. | en |
| dc.authority.people | Debole F. | en |
| dc.authority.people | Straccia U. | en |
| dc.authority.project | corda__h2020::b9871e3e08a9db98aaa42bf321ed0f1a | en |
| dc.authority.project | corda_____he::86c21b1aa82d5bdc53411947d7ebd9f8 | en |
| dc.authority.project | PE0000013 | en |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.appartenenza.mi | 973 | * |
| dc.contributor.area | Non assegn | * |
| dc.contributor.area | Non assegn | * |
| dc.contributor.area | Non assegn | * |
| dc.date.accessioned | 2024/06/21 11:42:14 | - |
| dc.date.available | 2024/06/21 11:42:14 | - |
| dc.date.firstsubmission | 2024/06/18 11:29:25 | * |
| dc.date.issued | 2024 | - |
| dc.date.submission | 2024/06/18 11:29:25 | * |
| dc.description.abstracteng | Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation. | - |
| dc.description.allpeople | Cardillo, F. A.; Debole, F.; Straccia, U. | - |
| dc.description.allpeopleoriginal | Cardillo F.A.; Debole F.; Straccia U. | en |
| dc.description.fulltext | partially_open | en |
| dc.description.numberofauthors | 3 | - |
| dc.identifier.doi | 10.1016/j.fss.2024.109048 | en |
| dc.identifier.isi | WOS:001255175300001 | en |
| dc.identifier.scopus | 2-s2.0-85195636781 | en |
| dc.identifier.source | crossref | * |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/476401 | - |
| dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0165011424001945 | en |
| dc.language.iso | eng | en |
| dc.relation.issue | 109048 | en |
| dc.relation.medium | ELETTRONICO | en |
| dc.relation.numberofpages | 19 | en |
| dc.relation.projectAcronym | TAILOR | en |
| dc.relation.projectAcronym | STARWARS | en |
| dc.relation.projectAcronym | FAIR | en |
| dc.relation.projectAwardNumber | 952215 | en |
| dc.relation.projectAwardNumber | 101086252 | en |
| dc.relation.projectAwardNumber | PE0000013 | en |
| dc.relation.projectAwardTitle | Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization | en |
| dc.relation.projectAwardTitle | STormwAteR and WastewAteR networkS heterogeneous data AI-driven management | en |
| dc.relation.projectAwardTitle | Future Artificial Intelligence Research | en |
| dc.relation.projectFunderName | European Commission | en |
| dc.relation.projectFunderName | European Commission | en |
| dc.relation.projectFunderName | European Commission | en |
| dc.relation.projectFundingStream | Horizon 2020 Framework Programme | en |
| dc.relation.projectFundingStream | Horizon Europe Framework Programme | en |
| dc.relation.projectFundingStream | NextGenerationEU program | en |
| dc.relation.volume | 490 | en |
| dc.subject.keywordseng | OWL 2 ontologies | - |
| dc.subject.keywordseng | Machine learning | - |
| dc.subject.keywordseng | Fuzzy logic | - |
| dc.subject.keywordseng | Concept/class inclusion rules | - |
| dc.subject.singlekeyword | OWL 2 ontologies | * |
| dc.subject.singlekeyword | Machine learning | * |
| dc.subject.singlekeyword | Fuzzy logic | * |
| dc.subject.singlekeyword | Concept/class inclusion rules | * |
| dc.title | PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies | en |
| dc.type.circulation | Internazionale | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.impactfactor | si | en |
| dc.type.miur | 262 | - |
| dc.type.referee | Esperti anonimi | en |
| iris.isi.extIssued | 2024 | - |
| iris.isi.extTitle | PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies | - |
| iris.isi.ideLinkStatusDate | 2025/01/16 13:05:53 | * |
| iris.isi.ideLinkStatusMillisecond | 1737029153783 | * |
| iris.isi.metadataErrorDescription | 0 | - |
| iris.isi.metadataErrorType | ERROR_NO_MATCH | - |
| iris.isi.metadataStatus | ERROR | - |
| iris.mediafilter.data | 2025/03/26 03:39:59 | * |
| iris.orcid.lastModifiedDate | 2025/03/13 16:43:34 | * |
| iris.orcid.lastModifiedMillisecond | 1741880614614 | * |
| iris.scopus.extIssued | 2024 | - |
| iris.scopus.extTitle | PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | repository | * |
| iris.unpaywall.bestoaversion | submittedVersion | * |
| iris.unpaywall.doi | 10.1016/j.fss.2024.109048 | * |
| iris.unpaywall.hosttype | repository | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://arxiv.org/abs/2303.07192 | * |
| iris.unpaywall.metadataCallLastModified | 04/05/2025 05:42:28 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1746330148612 | - |
| iris.unpaywall.oastatus | green | * |
| iris.unpaywall.pdfurl | https://arxiv.org/pdf/2303.07192 | * |
| scopus.authority.ancejournal | FUZZY SETS AND SYSTEMS###0165-0114 | * |
| scopus.category | 2609 | * |
| scopus.category | 1702 | * |
| scopus.contributor.affiliation | CNR | - |
| scopus.contributor.affiliation | CNR | - |
| scopus.contributor.affiliation | CNR | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60085207 | - |
| scopus.contributor.afid | 60085207 | - |
| scopus.contributor.auid | 57191090133 | - |
| scopus.contributor.auid | 22333451000 | - |
| scopus.contributor.auid | 12760566600 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Franco Alberto | - |
| scopus.contributor.name | Franca | - |
| scopus.contributor.name | Umberto | - |
| scopus.contributor.subaffiliation | Istituto di Linguistica Computazionale; | - |
| scopus.contributor.subaffiliation | Istituto di Scienza e Tecnologie dell'Informazione; | - |
| scopus.contributor.subaffiliation | Istituto di Scienza e Tecnologie dell'Informazione; | - |
| scopus.contributor.surname | Cardillo | - |
| scopus.contributor.surname | Debole | - |
| scopus.contributor.surname | Straccia | - |
| scopus.date.issued | 2024 | * |
| scopus.description.abstracteng | Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation. | * |
| scopus.description.allpeopleoriginal | Cardillo F.A.; Debole F.; Straccia U. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.description.abstracteng | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.funding.funders | 501100004462 - Consiglio Nazionale delle Ricerche; 501100007601 - Horizon 2020; 501100007601 - Horizon 2020; 100010661 - Horizon 2020 Framework Programme; 100010661 - Horizon 2020 Framework Programme; | * |
| scopus.funding.ids | 952215; 101086252; | * |
| scopus.identifier.doi | 10.1016/j.fss.2024.109048 | * |
| scopus.identifier.pui | 2032759171 | * |
| scopus.identifier.scopus | 2-s2.0-85195636781 | * |
| scopus.journal.sourceid | 26529 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | Elsevier B.V. | * |
| scopus.relation.article | 109048 | * |
| scopus.relation.volume | 490 | * |
| scopus.subject.keywords | Concept/class inclusion rules; Fuzzy logic; Machine learning; OWL 2 ontologies; | * |
| scopus.title | PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies | * |
| scopus.titleeng | PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
PN-OWL.FSS24.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Straccia et al_Elsevier-2024_preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
825.04 kB
Formato
Adobe PDF
|
825.04 kB | Adobe PDF | Visualizza/Apri |
|
Debole et al_PN_OWL_PostPrint.pdf
embargo fino al 11/06/2026
Descrizione: PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


