Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation.

PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies

Cardillo F. A.;Debole F.;Straccia U.
2024

Abstract

Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation.
Campo DC Valore Lingua
dc.authority.ancejournal FUZZY SETS AND SYSTEMS en
dc.authority.orgunit Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Cardillo F. A. en
dc.authority.people Debole F. en
dc.authority.people Straccia U. en
dc.authority.project corda__h2020::b9871e3e08a9db98aaa42bf321ed0f1a en
dc.authority.project corda_____he::86c21b1aa82d5bdc53411947d7ebd9f8 en
dc.authority.project PE0000013 en
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.appartenenza.mi 973 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/06/21 11:42:14 -
dc.date.available 2024/06/21 11:42:14 -
dc.date.firstsubmission 2024/06/18 11:29:25 *
dc.date.issued 2024 -
dc.date.submission 2024/06/18 11:29:25 *
dc.description.abstracteng Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation. -
dc.description.allpeople Cardillo, F. A.; Debole, F.; Straccia, U. -
dc.description.allpeopleoriginal Cardillo F.A.; Debole F.; Straccia U. en
dc.description.fulltext partially_open en
dc.description.numberofauthors 3 -
dc.identifier.doi 10.1016/j.fss.2024.109048 en
dc.identifier.isi WOS:001255175300001 en
dc.identifier.scopus 2-s2.0-85195636781 en
dc.identifier.source crossref *
dc.identifier.uri https://hdl.handle.net/20.500.14243/476401 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0165011424001945 en
dc.language.iso eng en
dc.relation.issue 109048 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 19 en
dc.relation.projectAcronym TAILOR en
dc.relation.projectAcronym STARWARS en
dc.relation.projectAcronym FAIR en
dc.relation.projectAwardNumber 952215 en
dc.relation.projectAwardNumber 101086252 en
dc.relation.projectAwardNumber PE0000013 en
dc.relation.projectAwardTitle Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization en
dc.relation.projectAwardTitle STormwAteR and WastewAteR networkS heterogeneous data AI-driven management en
dc.relation.projectAwardTitle Future Artificial Intelligence Research en
dc.relation.projectFunderName European Commission en
dc.relation.projectFunderName European Commission en
dc.relation.projectFunderName European Commission en
dc.relation.projectFundingStream Horizon 2020 Framework Programme en
dc.relation.projectFundingStream Horizon Europe Framework Programme en
dc.relation.projectFundingStream NextGenerationEU program en
dc.relation.volume 490 en
dc.subject.keywordseng OWL 2 ontologies -
dc.subject.keywordseng Machine learning -
dc.subject.keywordseng Fuzzy logic -
dc.subject.keywordseng Concept/class inclusion rules -
dc.subject.singlekeyword OWL 2 ontologies *
dc.subject.singlekeyword Machine learning *
dc.subject.singlekeyword Fuzzy logic *
dc.subject.singlekeyword Concept/class inclusion rules *
dc.title PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.impactfactor si en
dc.type.miur 262 -
dc.type.referee Esperti anonimi en
iris.isi.extIssued 2024 -
iris.isi.extTitle PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies -
iris.isi.ideLinkStatusDate 2025/01/16 13:05:53 *
iris.isi.ideLinkStatusMillisecond 1737029153783 *
iris.isi.metadataErrorDescription 0 -
iris.isi.metadataErrorType ERROR_NO_MATCH -
iris.isi.metadataStatus ERROR -
iris.mediafilter.data 2025/03/26 03:39:59 *
iris.orcid.lastModifiedDate 2025/03/13 16:43:34 *
iris.orcid.lastModifiedMillisecond 1741880614614 *
iris.scopus.extIssued 2024 -
iris.scopus.extTitle PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost repository *
iris.unpaywall.bestoaversion submittedVersion *
iris.unpaywall.doi 10.1016/j.fss.2024.109048 *
iris.unpaywall.hosttype repository *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://arxiv.org/abs/2303.07192 *
iris.unpaywall.metadataCallLastModified 04/05/2025 05:42:28 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1746330148612 -
iris.unpaywall.oastatus green *
iris.unpaywall.pdfurl https://arxiv.org/pdf/2303.07192 *
scopus.authority.ancejournal FUZZY SETS AND SYSTEMS###0165-0114 *
scopus.category 2609 *
scopus.category 1702 *
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60085207 -
scopus.contributor.afid 60085207 -
scopus.contributor.auid 57191090133 -
scopus.contributor.auid 22333451000 -
scopus.contributor.auid 12760566600 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Franco Alberto -
scopus.contributor.name Franca -
scopus.contributor.name Umberto -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Scienza e Tecnologie dell'Informazione; -
scopus.contributor.subaffiliation Istituto di Scienza e Tecnologie dell'Informazione; -
scopus.contributor.surname Cardillo -
scopus.contributor.surname Debole -
scopus.contributor.surname Straccia -
scopus.date.issued 2024 *
scopus.description.abstracteng Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T. To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not. PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not. We also illustrate the effectiveness of PN-OWL through extensive experimentation. *
scopus.description.allpeopleoriginal Cardillo F.A.; Debole F.; Straccia U. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.description.abstracteng *
scopus.document.type ar *
scopus.document.types ar *
scopus.funding.funders 501100004462 - Consiglio Nazionale delle Ricerche; 501100007601 - Horizon 2020; 501100007601 - Horizon 2020; 100010661 - Horizon 2020 Framework Programme; 100010661 - Horizon 2020 Framework Programme; *
scopus.funding.ids 952215; 101086252; *
scopus.identifier.doi 10.1016/j.fss.2024.109048 *
scopus.identifier.pui 2032759171 *
scopus.identifier.scopus 2-s2.0-85195636781 *
scopus.journal.sourceid 26529 *
scopus.language.iso eng *
scopus.publisher.name Elsevier B.V. *
scopus.relation.article 109048 *
scopus.relation.volume 490 *
scopus.subject.keywords Concept/class inclusion rules; Fuzzy logic; Machine learning; OWL 2 ontologies; *
scopus.title PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies *
scopus.titleeng PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
File Dimensione Formato  
PN-OWL.FSS24.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Straccia et al_Elsevier-2024_preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 825.04 kB
Formato Adobe PDF
825.04 kB Adobe PDF Visualizza/Apri
Debole et al_PN_OWL_PostPrint.pdf

embargo fino al 11/06/2026

Descrizione: PN-OWL: a two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/476401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact