Deep neural networks are used to study the ambient vibrations of the medieval towers of the San Frediano Cathedral and the Guinigi Palace in the historic centre of Lucca. The towers have been continuously monitored for many months via high-sensitivity seismic stations. The recorded data sets integrated with environmental parameters are employed to train a Temporal Fusion Transformer network and forecast the dynamic behaviour of the monitored structures. The results show that the adopted algorithm can learn the main features of the towers’ dynamic response, predict its evolution over time, and detect anomalies.

Vibration monitoring of historical towers: new contributions from data science

Girardi M.
;
Messina N.;Padovani C.;Pellegrini D.
2024

Abstract

Deep neural networks are used to study the ambient vibrations of the medieval towers of the San Frediano Cathedral and the Guinigi Palace in the historic centre of Lucca. The towers have been continuously monitored for many months via high-sensitivity seismic stations. The recorded data sets integrated with environmental parameters are employed to train a Temporal Fusion Transformer network and forecast the dynamic behaviour of the monitored structures. The results show that the adopted algorithm can learn the main features of the towers’ dynamic response, predict its evolution over time, and detect anomalies.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-031-61421-7
Historical constructions
Structural health monitoring
Deep neural networks
Time series forecasting
Anomaly detection
File in questo prodotto:
File Dimensione Formato  
Girardi et al_LNCE-Springer 2024.pdf

non disponibili

Descrizione: paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Girardi et al_LNCE-Springer 2024_preprint.pdf

accesso aperto

Descrizione: Submitted version
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 8.01 MB
Formato Adobe PDF
8.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/479901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact