Deep neural networks are used to study the ambient vibrations of the medieval towers of the San Frediano Cathedral and the Guinigi Palace in the historic centre of Lucca. The towers have been continuously monitored for many months via high-sensitivity seismic stations. The recorded data sets integrated with environmental parameters are employed to train a Temporal Fusion Transformer network and forecast the dynamic behaviour of the monitored structures. The results show that the adopted algorithm can learn the main features of the towers’ dynamic response, predict its evolution over time, and detect anomalies.
Vibration monitoring of historical towers: new contributions from data science
Girardi M.
;Messina N.;Padovani C.;Pellegrini D.
2024
Abstract
Deep neural networks are used to study the ambient vibrations of the medieval towers of the San Frediano Cathedral and the Guinigi Palace in the historic centre of Lucca. The towers have been continuously monitored for many months via high-sensitivity seismic stations. The recorded data sets integrated with environmental parameters are employed to train a Temporal Fusion Transformer network and forecast the dynamic behaviour of the monitored structures. The results show that the adopted algorithm can learn the main features of the towers’ dynamic response, predict its evolution over time, and detect anomalies.File | Dimensione | Formato | |
---|---|---|---|
Girardi et al_LNCE-Springer 2024.pdf
non disponibili
Descrizione: paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Girardi et al_LNCE-Springer 2024_preprint.pdf
accesso aperto
Descrizione: Submitted version
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
8.01 MB
Formato
Adobe PDF
|
8.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.