Large Language Models (LLMs) are increasingly used as 'content farm' models (CFMs), to generate synthetic text that could pass for real news articles. This is already happening even for languages that do not have high-quality monolingual LLMs. We show that fine-tuning Llama (v1), mostly trained on English, on as little as 40K Italian news articles, is sufficient for producing news-like texts that native speakers of Italian struggle to identify as synthetic. We investigate three LLMs and three methods of detecting synthetic texts (log-likelihood, DetectGPT, and supervised classification), finding that they all perform better than human raters, but they are all impractical in the real world (requiring either access to token likelihood information or a large dataset of CFM texts). We also explore the possibility of creating a proxy CFM: an LLM fine-tuned on a similar dataset to one used by the real 'content farm'. We find that even a small amount of fine-tuning data suffices for creating a successful detector, but we need to know which base LLM is used, which is a major challenge. Our results suggest that there are currently no practical methods for detecting synthetic newslike texts ‘in the wild’, while generating them is too easy. We highlight the urgency of more NLP research on this problem.

AI "news" content farms are easy to make and hard to detect: a case study in Italian

Puccetti G.;Alzetta C.;Dell'Orletta F.;Esuli A.
2024

Abstract

Large Language Models (LLMs) are increasingly used as 'content farm' models (CFMs), to generate synthetic text that could pass for real news articles. This is already happening even for languages that do not have high-quality monolingual LLMs. We show that fine-tuning Llama (v1), mostly trained on English, on as little as 40K Italian news articles, is sufficient for producing news-like texts that native speakers of Italian struggle to identify as synthetic. We investigate three LLMs and three methods of detecting synthetic texts (log-likelihood, DetectGPT, and supervised classification), finding that they all perform better than human raters, but they are all impractical in the real world (requiring either access to token likelihood information or a large dataset of CFM texts). We also explore the possibility of creating a proxy CFM: an LLM fine-tuned on a similar dataset to one used by the real 'content farm'. We find that even a small amount of fine-tuning data suffices for creating a successful detector, but we need to know which base LLM is used, which is a major challenge. Our results suggest that there are currently no practical methods for detecting synthetic newslike texts ‘in the wild’, while generating them is too easy. We highlight the urgency of more NLP research on this problem.
2024
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
LLM
Italian
File in questo prodotto:
File Dimensione Formato  
2406.12128v1.pdf

accesso aperto

Descrizione: Preprint - AI ‘News’ Content Farms Are Easy to Make and Hard to Detect: ACase Study in Italian
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri
2024.acl-long.817.pdf

accesso aperto

Descrizione: AI ‘News’ Content Farms Are Easy to Make and Hard to Detect: ACase Study in Italian
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/493655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact