Ion irradiation by 500 keV C+ ions has been used to introduce defects into graphene sheets deposited on SiO2 in a controlled way. The combined use of Raman spectroscopy and atomic force microscopy (AFM) allowed one to clarify the mechanisms of disorder formation in single layers, bilayers and multi-layers of graphene. The ratio between the D and G peak intensities in the Raman spectra of single layers is higher than for bilayers and multi-layers, indicating a higher amount of disorder. This cannot be only ascribed to point defects, originating from direct C+-C collisions, but also the different interactions of single layers and few layers with the substrate plays a crucial role. As demonstrated by AFM, for irradiation at fluences higher than 5 x 10(13) cm(-2), the morphology of single layers becomes fully conformed to that of the SiO2 substrate, i.e. graphene ripples are completely suppressed, while ripples are still present on bilayer and multi-layers. The stronger interaction of a single layer with the substrate roughness leads to the observed larger amount of disorder.

Ion irradiation and defect formation in single layer graphene

Giannazzo F;Raineri V;
2009

Abstract

Ion irradiation by 500 keV C+ ions has been used to introduce defects into graphene sheets deposited on SiO2 in a controlled way. The combined use of Raman spectroscopy and atomic force microscopy (AFM) allowed one to clarify the mechanisms of disorder formation in single layers, bilayers and multi-layers of graphene. The ratio between the D and G peak intensities in the Raman spectra of single layers is higher than for bilayers and multi-layers, indicating a higher amount of disorder. This cannot be only ascribed to point defects, originating from direct C+-C collisions, but also the different interactions of single layers and few layers with the substrate plays a crucial role. As demonstrated by AFM, for irradiation at fluences higher than 5 x 10(13) cm(-2), the morphology of single layers becomes fully conformed to that of the SiO2 substrate, i.e. graphene ripples are completely suppressed, while ripples are still present on bilayer and multi-layers. The stronger interaction of a single layer with the substrate roughness leads to the observed larger amount of disorder.
2009
Istituto per la Microelettronica e Microsistemi - IMM
RAMAN-SPECTROSCOPY
GRAPHITE
FILMS
SYSTEMS
LENGTH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 211
social impact