: CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e-) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e- mol-1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure-activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis.

Insights into the Structure-Capacity of Food Antioxidant Compounds Assessed Using Coulometry

Siano, Francesco;Fierro, Olga;Picariello, Gianluca
;
2023

Abstract

: CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e-) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e- mol-1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure-activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis.
2023
Istituto di Scienze dell'Alimentazione - ISA
CDAC
antioxidant capacity
antioxidant mechanisms
biamperometric detection
coulometry
electrochemical ratio
electrogenerated bromine
File in questo prodotto:
File Dimensione Formato  
antioxidants-12-01963_CDAC of 48 molecules_2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.6 MB
Formato Adobe PDF
8.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact