We investigated atomic site occupancy for the Si dopant in Si-doped κ-Ga2O3(001) using photoelectron spectroscopy (PES) and photoelectron holography (PEH). From PES and PEH, we found that the Si dopant had one chemical state, and three types of inequivalent Si substitutional sites (SiGa) were formed. The ratios for the inequivalent tetrahedral, pentahedral, and octahedral SiGa sites were estimated to be 55.0%, 28.1%, and 16.9%, respectively. Higher (lower) ratios for the three inequivalent SiGa sites may come from a lower (higher) formation energy. The Tetra (Octa) SiGa site has the highest (lowest) ratio of the three SiGa sites since it has the lowest (highest) formation energy. We suggest that the tetrahedral SiGa site is due to the active dopant site, whereas the pentahedral and octahedral SiGa sites can be attributed to the inactive dopant sites for Si-doped κ-Ga2O3(001).
Photoelectron Holographic Study for Atomic Site Occupancy for Si Dopants in Si-Doped κ-Ga2O3(001)
Bosi M.;Seravalli L.;
2024
Abstract
We investigated atomic site occupancy for the Si dopant in Si-doped κ-Ga2O3(001) using photoelectron spectroscopy (PES) and photoelectron holography (PEH). From PES and PEH, we found that the Si dopant had one chemical state, and three types of inequivalent Si substitutional sites (SiGa) were formed. The ratios for the inequivalent tetrahedral, pentahedral, and octahedral SiGa sites were estimated to be 55.0%, 28.1%, and 16.9%, respectively. Higher (lower) ratios for the three inequivalent SiGa sites may come from a lower (higher) formation energy. The Tetra (Octa) SiGa site has the highest (lowest) ratio of the three SiGa sites since it has the lowest (highest) formation energy. We suggest that the tetrahedral SiGa site is due to the active dopant site, whereas the pentahedral and octahedral SiGa sites can be attributed to the inactive dopant sites for Si-doped κ-Ga2O3(001).File | Dimensione | Formato | |
---|---|---|---|
Photoelectron-holographic-study-for-atomic-site-occupancy-for-si-dopants-in-si-doped-κ-ga2o3(001).pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.8 MB
Formato
Adobe PDF
|
6.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Photoelectron holographic study for atomic sites occupancy for Si dopant in Si-doped κ-Ga2O3(001).pdf
solo utenti autorizzati
Descrizione: Supporting Information
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
619.82 kB
Formato
Adobe PDF
|
619.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.